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We investigated SARS-CoV-2 potential tropism by survey-
ing expression of viral entry-associated genes in single-cell 
RNA-sequencing data from multiple tissues from healthy 
human donors. We co-detected these transcripts in specific 
respiratory, corneal and intestinal epithelial cells, potentially 
explaining the high efficiency of SARS-CoV-2 transmission. 
These genes are co-expressed in nasal epithelial cells with 
genes involved in innate immunity, highlighting the cells’ 
potential role in initial viral infection, spread and clearance. 
The study offers a useful resource for further lines of inquiry 
with valuable clinical samples from COVID-19 patients and we 
provide our data in a comprehensive, open and user-friendly 
fashion at www.covid19cellatlas.org.

The coronavirus disease 2019 (COVID-19) is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. 
Detection of the virus was first reported in Wuhan2, China and has 
since spread worldwide, emerging as a global pandemic3.

In symptomatic patients, nasal swabs have yielded higher viral 
loads than throat swabs4. The same distribution was observed in an 
asymptomatic patient4, implicating the nasal epithelium as a portal 
for initial infection and transmission. Cellular entry of coronavi-
ruses depends on the binding of the spike (S) protein to a specific 
cellular receptor and subsequent S protein priming by cellular 
proteases. Similarly to SARS-CoV5,6, SARS-CoV-2 employs ACE2 
as a receptor for cellular entry. The binding affinity of the S pro-
tein and ACE2 was found to be a major determinant of SARS-CoV 
replication rate and disease severity4,7. Viral entry also depends on 
TMPRSS2 protease activity and cathepsin B/L activity may be able 
to substitute for TMPRSS27.

ACE2 and TMPRSS2 have been detected in both nasal and bron-
chial epithelium by immunohistochemistry8. Gene expression of ACE2 
and TMPRSS2 has been reported to occur largely in alveolar epithelial 
type II cells9–11, which are central to SARS-CoV pathogenesis, whereas 
a different study reported the absence of ACE2 in the upper airway12. 
To clarify the expression patterns of ACE2 and TMPRSS2, we ana-
lyzed their expression and the expression of other genes potentially  

associated with SARS-CoV-2 pathogenesis at cellular resolution, 
using single-cell RNA sequencing (scRNA-seq) datasets from healthy 
donors generated by the Human Cell Atlas consortium and other 
resources to inform and prioritize the use of precious, limited clinical 
material that is becoming available from COVID-19 patients.

We investigated gene expression of ACE2 in multiple scRNA-seq 
datasets from different tissues, including those of the respiratory 
tree, cornea, retina, esophagus, ileum, colon, heart, skeletal muscle, 
spleen, liver, placenta/decidua, kidney, testis, pancreas, prostate 
gland, brain, skin and fetal tissues. We note that studies may lack 
specific cell types due to their sparsity, the challenges associated 
with isolation or analysis methodology. Moreover, expression may 
be under-detected due to technical dropout effects. Thus, while 
positive (presence) results are highly reliable, absence should be 
interpreted with care.

ACE2 expression was generally low in all analyzed datasets. 
Consistently with independent studies10,11, ACE2 was expressed in 
cells from multiple tissues, including airways, cornea, esophagus, 
ileum, colon, liver, gallbladder, heart, kidney and testis (Fig. 1a; first 
column). TMPRSS2 was highly expressed with a broader distribu-
tion (Fig. 1a; second column), suggesting that ACE2, rather than 
TMPRSS2, may be a limiting factor for viral entry at the initial infec-
tion stage. Cells from the respiratory tree, cornea, esophagus, ileum, 
colon, gallbladder and common bile duct expressed both genes in 
the same cell (Fig. 1a; third column). We also assessed ACE2 and 
TMPRSS2 expression in developmental datasets from fetal tissues, 
including liver, thymus, skin, bone marrow, yolk sac and lung, and 
found little to no expression of ACE2 in all but fetal liver and thymus 
(Fig. 1a) where there was no co-expression with TMPRSS2 (data 
not shown) except for a cluster of medullary thymic epithelial cells  
(Fig. 1a). ACE2 expression is noticeable in certain cell types in pla-
centa/decidua without TMPRSS2 (Fig. 1a). Additional fetal data 
across relevant tissues and stages are needed to determine the gen-
erality of these findings.

To further characterize specific epithelial cell types expressing 
ACE2, we evaluated ACE2 expression within the lung and airway 
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epithelium. We found that, despite a low level of expression over-
all, ACE2 was expressed in multiple epithelial cell types across the 
airway, as well as in alveolar epithelial type II cells in the paren-
chyma, consistently with previous studies9–11. Notably, nasal epithe-
lial cells, including two previously described clusters of goblet cells 
and one cluster of ciliated cells, show the highest expression among 
all investigated cells in the respiratory tree (Fig. 1b). We confirmed 
enriched ACE2 expression in nasal epithelial cells in an independent 
scRNA-seq study that includes nasal brushings and biopsies. The 
results were consistent; we found the highest expression of ACE2 in 
nasal secretory cells (equivalent to the two goblet cell clusters in the 
previous dataset) and ciliated cells (Fig. 1b).

In addition, scRNA-seq data from an in vitro epithelial regen-
eration system from nasal epithelial cells corroborated the expres-
sion of ACE2 in goblet/secretory cells and ciliated cells in air–liquid 
interface cultures (Extended Data Fig. 1). Notably, the differenti-
ating cells in the air–liquid interface acquire progressively more 
ACE2 (Extended Data Fig. 1). The results also suggest that this 
in vitro culture system may be biologically relevant for the study of 
SARS-CoV-2 pathogenesis.

It is worth noting that TMPRSS2 was only expressed in a subset of 
ACE2+ cells (Extended Data Fig. 2), suggesting that the virus might 
use alternative pathways. It was previously shown that SARS-CoV-2 
could enter TMPRSS2− cells using cathepsin B/L7. Indeed, other 
proteases were more promiscuously expressed than TMPRSS2, 
especially cathepsin B, which was expressed in more than 70–90% 
of ACE2+ cells (Extended Data Fig. 2). However, while TMPRSS2 
activity is documented to be important for viral transmission13,14, 
the potential of cathepsin B/L or other proteases to functionally 
replace TMPRSS2 has not been determined.

We next asked whether enriched expression of viral receptors 
and entry-associated molecules in the nasal region/upper airway 
might be relevant for viral transmissibility. Here, we assessed the 
expression of viral receptor genes that are used by other coronavi-
ruses and influenza viruses in our datasets. We looked for ANPEP, 
used by HCoV-22944 (ref. 15) and DPP4, used by MERS-CoV45 
(ref. 16), as well as enzymes ST6GAL1 and ST3GAL4, which are 
important for the synthesis of α(2,6)-linked and α(2,3)-linked sialic 
acids recognized by influenza viruses17. Notably, their expression 
distribution coincided with viral transmissibility patterns based 
on a comparison to the basic reproduction number (R0), which 
estimates the number of people who can become infected from 
a single infected person. The skewed distribution of the recep-
tors/enzymes toward the upper airway is observed in viruses with 
higher R0/infectivity, including those of SARS-CoV/SARS-CoV-2 
(R0 ~1.4–5.0 (refs. 18–20)), influenza (mean R0 ~1.347 (ref. 21)) and 
HCoV-229E (unidentified R0; associated with common cold). 
This distribution is in distinct contrast with that of DPP4, the  

receptor for MERS-CoV (R0 ~0.3–0.8 (ref. 22)), a coronavirus with 
limited human-to-human transmission23, in which expression 
skews toward lower airway/lung parenchyma (Fig. 2a). Therefore, 
our data highlight the possibility that viral transmissibility is 
dependent on the spatial distribution of receptor accessibility 
along the respiratory tract.

To gain more insight into the expression patterns of genes 
associated with ACE2, we performed Spearman’s correlation 
analysis with Benjamini–Hochberg-adjusted P values to identify 
genes associated with ACE2 across all cells within the lung epi-
thelial cell datasets. While the correlation coefficients are rela-
tively low (<0.12), likely due to low expression of ACE2, technical 
noise and dropout effects, the expression pattern of the top 50 
ACE2-correlated genes across the respiratory tree is consistent 
with that of ACE2, with a skewed expression toward upper air-
way cells (Fig. 2b and Extended Data Fig. 3a,b). Notably, while 
some of the genes are associated with carbohydrate metabolism, 
possibly due to their role in goblet cell mucin synthesis, a num-
ber of genes associated with immune functions including innate 
and antiviral immune functions, are over-represented in the rank 
list, including IDO1, IRAK3, NOS2, TNFSF10, OAS1 and MX1  
(Fig. 2b and Supplementary Table 1). Expression of these genes is 
highest in nasal goblet 2 cells (Fig. 2b), consistent with the pheno-
type previously described. Nonetheless, nasal goblet 1 and nasal 
ciliated 2 cells also significantly express these genes (Fig. 2b). 
Given their environmental exposure and high expression of recep-
tor/receptor-associated enzymes (Fig. 2a), it is plausible that nasal 
epithelial cells are conditioned to express these immune-associated 
genes to reduce viral susceptibility.

In this study, we explored multiple scRNA-seq datasets gener-
ated within the Human Cell Atlas (HCA) consortium and other 
resources and found that the SARS-CoV-2 entry receptor ACE2 
and viral entry-associated protease TMPRSS2 are highly expressed 
in nasal goblet and ciliated cells. This finding implicates these cells 
as loci of original infection and possible reservoirs for dissemina-
tion within and between individuals. Co-expression in other bar-
rier surface tissues could also suggest further investigation into 
alternative transmission routes. For example, the co-expression 
in esophagus, ileum and colon could explain viral fecal shedding 
observed clinically24, with implications for potential fecal–oral 
transmission, whereas the co-expression in superficial conjunctival 
cells could explain an ocular phenotype observed in a small por-
tion of COVID-19 patients25 with the potential of spread through 
the nasolacrimal duct.

The results confirmed the expression of ACE2 in multiple tis-
sues shown in previous studies10,11 with added information on 
tissues not previously investigated, including nasal epithelium  
and cornea and its co-expression with TMPRSS2. We  

Fig. 1 | expression of ACE2 and TMPRSS2 across different tissues and its enrichment in nasal epithelial cells. a, RNA expression of SARS-CoV-2 entry 
receptor ACE2 (first column), entry-associated protease TMPRSS2 (second column) and their co-expression (third column) from multiple scRNA-seq 
datasets across different tissues. DC, dendritic cells; mac, macrophages, RBC, red blood cells; TA, transit-amplifying cells; LSC, limbal stem cells; Epi, 
epithelial cells; IEL, intraepithelial lymphocytes; ILC, innate lymphoid cells; GC, germinal center B cells; MT, mitochondria; LSEC, liver sinusoidal endothelial 
cells; VSMC, vesicular smooth muscle cells; cTEC, cortical thymic epithelial cells; mTEC, medullary thymic epithelial cells; mcTEC, medullary/cortical 
thymic epithelial cells; EC, endothelial cells; FB, fibroblasts; SMC, smooth muscle cells; aCM, atrial cardiomyocytes; vCM, ventricular cardiomyocytes; 
MNP, mononuclear phagocytes; EVT, extravillous trophoblast cells; HB, Hofbauer cells; MAIT, mucosal-associated invariant T cells; MO, monocytes; SCT, 
syncytiotrophoblast cells; VCT, villous cytotrophoblast cells; dM, decidual macrophages; dP, decidual perivascular cells; dS, decidual stromal cells. Raw 
expression values were normalized, log transformed and summarized by published cell clustering where available or reproduced clustering annotated 
using marker genes and cell type nomenclature from the respective studies. The size of the dots indicates the proportion of cells in the respective cell 
type having greater-than-zero expression of ACE2 (first column), TMPRSS2 (second column) or both (third column), while the color indicates the mean 
expression of ACE2 (first and third columns) or TMPRSS2 (second column). b, Schematic illustration depicts major anatomical regions in the human 
respiratory tree demonstrated in this study: nasal, lower airway and lung parenchyma (left). Expression of ACE2 is from airway epithelial cell datasets: 
Vieira Braga et al.26 (middle) and Deprez et al.27 (right). Datasets were retrieved from existing sources and cell clustering and nomenclature were retained 
based on the respective studies. For gene expression results in the dot plots, the dot size represents the proportion of cells within the respective cell type 
expressing the gene and the dot color represents the average gene expression level within the particular cell type.
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clearly detected nasal ACE2 mRNA expression, for which pro-
tein confirmation is needed to resolve conflicting results in lit-
erature8,12. Our findings may have important implications for  

understanding viral transmissibility, considering that the primary 
viral transmission is through infectious droplets. Moreover, as 
SARS-CoV-2 is an enveloped virus, its release does not require cell 
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lysis. Thus, the virus might exploit existing secretory pathways in 
nasal goblet cells sustained at a presymptomatic stage. These dis-
coveries could have translational implications. For example, given 

that nasal carriage is likely to be a key feature of transmission, 
drugs/vaccines administered intranasally could be highly effective 
in limiting spread.
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This collaborative effort by HCA Biological Network (the lung) 
illustrates the opportunities from integrative analyses of HCA data, 
with future examples of consortium work expected soon.
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Fig. 2 | Respiratory expression of viral receptor/entry-associated genes and implications for viral transmissibility and genes associated with ACE2 
expression. a, Expression of ACE2 (an entry receptor for SARS-CoV and SARS-CoV-2), ANPEP (an entry receptor for HCoV-229E), ST6GAL1/ST3GAL4 
(enzymes important for synthesis of influenza entry receptors) and DPP4 (an entry receptor for MERS-CoV) from the airway epithelial datasets: Vieira 
Braga et al.26 (left) and Deprez et al.27 (right). The basic reproductive number (R0) for respective viruses, if available, is shown. b, Respiratory epithelial 
expression of the top 50 genes correlated with ACE2 expression based on Spearman’s correlation analysis (with Benjamini–Hochberg-adjusted P values) 
performed on all cells within the Vieira Braga et al.26 airway epithelial dataset. The colored gene names represent genes that are immune-associated 
(GO:0002376, immune system process or GO:0002526, acute inflammatory response). For gene expression results in the dot plots, the dot size 
represents the proportion of cells within the respective cell type expressing the gene and the color represents the average gene expression level within the 
particular cell type.
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Methods
Datasets were retrieved from published and unpublished datasets in multiple 
human tissues, including airways26,27, cornea (personal communication; Lako 
laboratory, Newcastle, UK), skeletal muscle (personal communication, Teichmann 
laboratory, Wellcome Sanger Institute and Zhang laboratory, Sun-Yat-Sen 
University, Guangzhou, China), ileum28, colon29, pancreas30, liver31, gallbladder 
(personal communication; Vallier laboratory, University of Cambridge, UK), 
heart (Teichmann laboratory, Hubner laboratory/Berlin, Seidmanns/Harvard and 
Noseda laboratory/Imperial College London, UK), kidney32, placenta/decidua33, 
testis34, prostate gland35, brain36, skin37, retina38, spleen39, esophagus39 and fetal 
tissues40,41. Raw expression values were normalized and log transformed. We 
retained cell clustering based on the original studies when available.

For each dataset where per-cell annotation was not available, we re-processed 
the data from a raw or normalized (whichever was deposited alongside the original 
publication) quantification matrix. The standard scanpy (v.1.4.3) clustering 
procedure was followed. When batch information was available, the harmony 
package was used to correct batch effects in the principal component space and 
the corrected principal components were used for computing nearest-neighbor 
graphs. To re-annotate the cells, multiple clusterings of different resolutions were 
generated among which the one best matching published clustering was picked and 
manual annotation was undertaken using marker genes described in the original 
publication. Full details can be found in analysis notebooks available at github.
com/Teichlab/covid19_MS1.

Illustration of the results was generated using scanpy and Seurat (v.3.1). 
For correlation analysis with ACE2, we performed Spearman’s correlation with 
statistical tests using the R Hmisc package (v.4.3-1) and P values were adjusted 
with the Benjamini–Hochberg method with the R stats package (v.3.6.1) on the 
Vieira Braga et al.26 airway epithelial dataset and the Deprez et al.27 airway dataset. 
We also tested multiple additional approaches, including Kendall’s correlation, 
data transformation by sctransform function in the Seurat package and data 
imputation by the Markov affinity-based graph imputation of cells algorithm to 
compare correlation results. While imputation significantly improved correlations, 
the top genes correlated with ACE2 are largely the same as the analysis performed 
on un-imputed data. With the uncertainty of the extent that imputation 
artificially distorted the data, we reported results with no imputation, even though 
correlations were low. The correlation coefficients for all genes are included 
as Supplementary Data 1. The top 50 genes in each dataset were characterized 
based on gene ontology classes from the Gene Ontology database and associated 
pathways in PathCards were from the Pathway Unification database.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The published datasets can be found as follows: pulmonary airways (European 
Genome-phenome Archive: EGAS00001001755, EGAS00001002649; 
EGAS00001004082; lungcellatlas.org and www.genomique.eu/cellbrowser/
HCA), ileum (NCBI: GSE134809), colon (Single Cell Portal: SCP259; singlecell.
broadinstitute.org/single_cell), pancreas (NCBI: GSE84133), liver (NCBI: 
GSE115469), kidney (www.kidneycellatlas.org), placenta/decidua (EBI Array 
Express: E-MTAB-6701; maternal-fetal-interface.cellgeni.sanger.ac.uk), testis 
(NCBI: GSE120508), brain (www.gtexportal.org/home/data-sets), retina (NCBI: 
GSE135922), skin (European Genome-phenome Archive: EGAS00001002927), 
spleen and esophagus (tissuestabilitycellatlas.org) and fetal tissues (Array Express: 
E-MTAB-7407 and E-MTAB-8581; developmentcellatlas.ncl.ac.uk).
All of the published datasets and relevant data from unpublished sources 
in this study can be visualized and assessed through a website portal (www.
covid19cellatlas.org).

Code availability
Analysis notebooks are available at github.com/Teichlab/covid19_MS1.
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Extended Data Fig. 1 | Gene expression of ACE2 in an in vitro air-liquid interface (ALi) system. Epithelial regeneration system from nasal epithelial cells 
was used for in vitro cultures on successive days (7, 12 and 28), resulting in different epithelial cell types along differentiation trajectory characterized in 
Ruiz García et al. 2019. The cultures were differentiated in Pneumacult media. Schematic illustration depicts the respective cell types in the differentiation 
trajectory, and the dot plot illustrates the cultured cell types along the differentiation pseudotime, along with their respective location within the epithelial 
layers. For gene expression results in the dot plot: the dot size represents the proportion of cells within the respective cell type expressing the gene and the 
dot color represents the average gene expression level within the particular cell type.
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Extended Data Fig. 2 | expression and co-expression of SARS-CoV-2 entry-associated proteases in ACe2+ airway epithelial cells. The expression of 
SARS-CoV-2 entry-associated proteases TMPRSS2, CTSB, and CTSL in ACE2+ cells from the Vieira Braga, Kar et al. (top) and Deprez et al. (bottom) airway 
epithelial datasets is shown. The color represents the expression level at the single-cell resolution and the cells are grouped based on the cell types 
specified.
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Extended Data Fig. 3 | Spearman’s correlation results from the two airway datasets are largely consistent. a, Respiratory epithelial expression of the top 
50 genes correlated with ACE2 expression based on Spearman’s correlation analysis performed on all cells within the Deprez et al. dataset. The colored 
gene names represent genes that are immune-associated (GO:0002376: immune system process). b, The Spearman’s correlation coefficients of gene 
expression with ACE2 from the Vieira Braga, Kar et al. airway epithelial dataset and the Deprez et al. airway dataset are shown in the scatter plot. The 
number of observations for the genes is counted in each bin, the value on the x-axis represents the Spearman’s correlation coefficients from the Vieira 
Braga, Kar et al. dataset, and the value on the y-axis represents the Spearman’s correlation coefficients from the Deprez et al. dataset.
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