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SUMMARY

Background
The use of proton pump inhibitors (PPIs) is increasing worldwide. Suppres-
sion of gastric acid alters the susceptibility to enteric bacterial pathogens.

Aim
This systematic review was undertaken to examine the relationship between
PPI use and susceptibility to enteric infections by a specific pathogen based
on published literature and to discuss the potential mechanisms of PPI
enhanced pathogenesis of enteric infections.

Methods
PubMed, OVID Medline Databases were searched. Search terms included
proton pump inhibitors and mechanisms of, actions of, gastric acid, enteric
infections, diarrhoea, Clostridium difficile, Salmonella, Shigella and Cam-
pylobacter.

Results
The use of PPIs increases gastric pH, encourages growth of the gut microfl-
ora, increases bacterial translocation and alters various immunomodulatory
and anti-inflammatory effects. Enteric pathogens show variable gastric acid
pH susceptibility and acid tolerance levels. By multiple mechanisms, PPIs
appear to increase susceptibility to the following bacterial enteropathogens:
Salmonella, Campylobacter jejuni, invasive strains of Escherichia coli, vegeta-
tive cells of Clostridium difficile, Vibrio cholerae and Listeria. We describe
the available evidence for enhanced susceptibility to enteric infection caused
by Salmonella, Campylobacter and C. difficile by PPI use, with adjusted rela-
tive risk ranges of 4.2–8.3 (two studies); 3.5–11.7 (four studies); and 1.2–5.0
(17 of 27 studies) for the three respective organisms.

Conclusions
Severe hypochlorhydria generated by PPI use leads to bacterial colonisation
and increased susceptibility to enteric bacterial infection. The clinical impli-
cation of chronic PPI use among hospitalized patients placed on antibiotics
and travellers departing for areas with high incidence of diarrhoea should
be considered by their physicians.
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INTRODUCTION
Proton pump inhibitors (PPIs) are the major treatment
for many gastroesophageal diseases. Omeprazole (1988),
lansoprazole (1995), pantoprazole (1997), rabeprazole
(1999) and esomeprazole (2001) are the widely used PPIs
clinically and omeprazole is available over-the-counter
without a prescription in many countries. According to
one report, PPIs are the third most prescribed medica-
tions in United States with 13.9 billion dollar sales per
year. With the widespread use of PPIs worldwide, the
authors of this review have attempted to put the added
risk for acquisition of enteric infection in PPI-treated
people into perspective based on the published literature.

Bacterial colonisation by exogenous enteric microbes
is kept in check by a number of host defence mecha-
nisms such as gastric acid, host gut microflora, local gut
immunity, intestinal motility, intestinal secretion and
epithelial barrier.1 These forces work synergistically in
maintaining intestinal homeostasis. A compromise in
host defences may influence susceptibility to various
enteric pathogens. In this review we will discuss the asso-
ciation of PPI treatment and enhanced susceptibility to
enteric infection with an emphasis on potential mecha-
nisms.

METHODS
A comprehensive literature search was undertaken in
PubMed and Ovid Medline Databases as of May 1, 2011.
A literature search was undertaken using the key words:
proton pump inhibitors and mechanisms of, actions of,
gastric acid, enteric infections, diarrhoea, Clostridium dif-
ficile, Salmonella, Shigella, Campylobacter, Vibrio cholerae
and Listeria. For each enteric infection by a particular
pathogen, studies evaluating its association with proton
pump inhibitors were explored. For initial selection, stud-
ies were eligible if they referred to any aspect of ant-
acid ⁄ antisecretory therapy and enteric infection by any
organism. We then restricted our search for studies hav-
ing independent data on PPIs use and its relevance to the
particular enteric infection. In addition, a manual search
of the full text for the relevant review articles and original
studies was performed to identify additional data.

An example of one such search strategy which we
applied for Salmonella and proton pump inhibitors in
PubMed was (‘‘salmonella’’[MeSH Terms] OR ‘‘salmo-
nella’’[All Fields]) AND (‘‘proton pump inhibi-
tors’’[MeSH Terms] OR (‘‘proton’’[All Fields] AND
‘‘pump’’[All Fields] AND ‘‘inhibitors’’[All Fields]) OR
‘‘proton pump inhibitors’’[All Fields] OR (‘‘proton’’[All

Fields] AND ‘‘pump’’[All Fields] AND ‘‘inhibitor’’[All
Fields]) OR ‘‘proton pump inhibitor’’[All Fields] OR
‘‘proton pump inhibitors’’[Pharmacological Action]).
This search strategy yielded 15 studies, of which three
met our criteria and we found an additional study by
reviewing the references of the selected studies. A similar
search was undertaken in Ovid Medline database and for
other enteric infections.

As the main focus of this review was to evaluate the
role of PPIs in enteric infections, while preparing the evi-
dence table, studies not categorising antacid ⁄ antisecretory
therapy and not assessing individual role of PPIs were
excluded. Only studies assessing the independent role of
proton pump inhibitors were included in our evidence
tables. Additional details on association of other antacid
agents studied, salient features of the study and potential
bias were mentioned in the comments section of the
tables presented. Each selected study was evaluated by
both the authors to determine its inclusion for the
review. We included no date restrictions and selected
studies published in English language in peer-reviewed
journals. Case reports and case series were not included
in our review.

GASTRIC ACID AND PPI USE
Gastric acid, secreted by the parietal cells in the stomach,
plays a vital role in the local defence of the gut against
ingested organisms. Parietal cell acid secretion is regulated
by three major neuro-hormonal pathways. Neuronal
secretion is regulated by acetylcholine and hormonal
secretion is regulated by gastrin and histamine. All the sig-
nalling pathways finally converge on H+) K+ ATPase, the
proton pump of the parietal cell, secreting gastric acid.
Parietal cells secrete hydrochloric acid at a concentration
of pH 0.8 and maintain a median daily pH in human
stomach around 1.4.2 Gastric acid secretion demonstrates
a circadian rhythm, with a rise in gastric acid secretion
during the day with the greatest rate of secretion during
the evening followed by gradual decrease during the
night.3 The 24-h integrated intra-gastric acidity in fasted
or fed subjects is similar. Gastric acid secretion is influ-
enced by several factors such as food, gender, smoking,
stress, ulcer disease, Helicobacter pylori gastric infection
and hormonal factors.4 Gastric acid at pH < 4 has a pow-
erful bactericidal effect, capable of killing exogenous acid
sensitive bacteria introduced into the stomach usually
within 15 min.5 Any increase in the gastric pH above 4
causes a state of hypochlorhydria and potentially increases
the susceptibility to various microbes, allowing at least
50% of ingested bacteria to survive the gastric trap.6
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Proton pump inhibitors selectively inhibit the gastric
H+) K+ ATPase and hence gastric acid secretion. All
PPIs irreversibly inhibit the gastric H+) K+ ATPase by
binding to alpha subunit of the proton pump. Both basal
and stimulated secretion of gastric acid is inhibited, inde-
pendent of the nature of parietal cell stimulation. All
PPIs are more or less similar in efficacy and potency.
The slight difference observed among them is attributed
to their different pharmacokinetic properties. PPIs are
most commonly used for gastroesophageal reflux disease
(GERD) and peptic ulcers. The efficacy of PPIs is gener-
ally evaluated by the degree of acid suppression mea-
sured either as mean ⁄ median 24-h intra-gastric pH or
the duration of time during which a PPI maintains
intra-gastric pH above a certain threshold. For peptic
ulcers, the target threshold is pH > 3 and for GERD the
threshold is pH > 4, as these pH strongly correlates with
healing of these conditions.7 So while prescribing PPIs
for these conditions, physicians aim to achieve this thera-
peutic threshold pH. Importantly, a pH > 4 is also
observed to be a watershed line for acquisition of various
enteric infections.

There have been studies evaluating the relative effi-
cacy of different PPIs using various drug formulations,
dose schedules and routes of administration under vari-
ous conditions for treating peptic ulcer or GERD. At
therapeutic doses, the PPIs generally cause the gastric
pH to be greater than 4.8 Among esomeprazole 40 mg,
lansoprazole 30 mg, omeprazole 20 mg, pantoprazole
40 mg and rabeprazole 20 mg for treatment of GERD,
esomeprazole 40 mg provides more effective intra-
gastric acid control by having the longest duration of
acid control (14.1 h after single daily dose for 5 days)
and having the highest 24-h median intra-gastric pH.8, 9

The efficacy of different PPIs also depends on the vari-
ous dosing schedules such as lansoprazole 30 mg BD
provide more effective acid suppression than esomepraz-
ole 40 mg OD but less than esomeprazole 40 mg BD.10

Esomeprazole 20 mg OD appeared to be more effective
than rabeprazole 10 mg but less than rabeprazole 20 mg
among healthy subjects.11, 12 Among healthy volunteers,
studies evaluating the effect of PPIs on 24-h intra-
gastric pH found that omeprazole 40 mg OD caused a
median 24-h intra-gastric pH of 4.9 after 1 week,13 pan-
toprazole 40 mg caused a mean 24-h pH of 4.0 after
1 week,14 lansoprazole 30 mg OD produced a mean
24-h pH of 4.5 while 30 mg BD dose produced a pH
5.0 after 5 days,15 rabeprazole 20 mg OD produced
median 24-h pH of 4.7 and 40 mg OD caused a pH of
5.0 after 1 week.16 Esomeprazole 40 mg BD produced a

higher median 24-h pH of 6.1 with median intra-gastric
24-h pH > 4 for 21 h after 5 days of ingestion among
healthy volunteers.17 Pantoprazole 40 mg BD, in com-
parison, produced a median intra-gastric 24-h pH > 4
for 16.8 h. The duration of time when the intra-gastric
pH remains greater than 4 is vital for the overall thera-
peutic efficacy of PPIs. The duration of reduced gastric
acid may be influenced by PPI dose. Esomeprazole
40 mg OD produced a mean 24-h pH > 4 for 14.1 h as
opposed to 20 mg BD dose which produced a mean 24-
h pH > 4 for 17.5 h.18 In addition to PPI use, gastric
pH is also influenced by usage of other medications,
meals and existence of co-morbid conditions. These dif-
ferences in the efficacies of various PPIs certainly can
influence the susceptibility to enteric infections. In a
large pharmaco-epidemiologic study by Howell et al.,19

the risk of nosocomial C. difficile infection (CDI)
increased with increasing levels of acid suppression. The
study demonstrated increased risk of CDI among
patients taking PPI more frequently than daily as com-
pared with taking daily PPI.

GUT MICROFLORA AND PPI USE
Gut microflora has metabolic, trophic and protective
functions which make them host friendly or host delete-
rious depending upon their location in the gut, their
numbers and the presence of virulence properties.
Endogenous bacteria of the lower gastrointestinal tract
provide homeostatic protection from ingested patho-
gens.1 PPIs are implicated in the disruption of the gut
ecology and causing altered bacterial growth ranging
from abnormal bacterial counts20 to overt small intes-
tine bacterial overgrowth (SIBO).21 Both faecal and oro-
pharyngeal type of microbes have been observed to
contribute to small bowel bacterial overgrowth. This
may be related to the lack of destruction of bacteria
swallowed from the oropharynx or to the ascending col-
onisation from the intestine.22 Upper gut colonisation
by enteric pathogens relate to the degree of hypochlo-
rhydria and organism virulence including acid-resis-
tance.22, 23 Gastric acid, once believed to affect only
upper gut flora, influences lower intestinal microflora
also. Bacteria in both small and large bowel increase in
number in gastric hypochlorhydric conditions.24 Severe
hypochlorhydria induced by PPIs can thus modulate the
microflora in stomach, in small intestine as well as in
lower intestine, potentially increasing the susceptibility
to infection by enteric pathogens that have a predilec-
tion for different regions of the gut. PPIs have also been
shown to retard gastrointestinal motility,25 delay gastric
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emptying rate26 and decreased gastric mucus viscosity,27

all of which may have direct effects on gut microflora
and survival of enteric pathogens.

BACTERIAL TRANSLOCATION AND PPI USE
In bacterial translocation enteric microbes are able to
escape local gut defences and cross the epithelial bar-
rier.28 Animal model studies have shown a relationship
between hypochlorhydria by gastric acid inhibitors and
increased bacterial translocation.29, 30 While assessing
PPIs in a triple therapy regimen for eradication of
H. pylori, omeprazole was shown to facilitate macromo-
lecular transport by widening the intra-epithelial spacing
and increasing the permeability of gastric mucosa.31

Translocation across the intestinal epithelial barrier can
be further encouraged by the use of PPIs through a sev-
eral fold increase in gastric and small bowel microflora,
secondary to reduced gastric acidity and impaired gut
motility.28 Studies assessing the effect of PPI on bacterial
translocation have been limited to animal studies and
human studies are needed.

ANTI-INFLAMMATORY EFFECTS OF PPI USE
In vitro studies involving various PPIs have shown a
wide range of immunomodulatory and anti-inflammatory
effects. In vitro studies have shown that omeprazole
exerts significant anti-oxidant effects against HOCl- and
iron- and copper-driven oxidant damage.32 Pantoprazole,
omeprazole and lansoprazole showed hydroxyl ion scav-
enger activity at higher concentrations.33 Among the
inflammatory cells, neutrophils are particularly suscepti-
ble to PPI therapy, resulting in inhibition of neutrophil’s
bactericidal activity.34–36

As with non-enteric infectious diseases, inflammatory
response against gastrointestinal pathogens is regulated
by complex multi-step processes involving microbial
products, chemo-attractants, cytokines and interleukins,
adhesion molecules and leucocytes.

Proton pump inhibitors have been shown to affect:
chemotactic migration of neutrophils in response to
formyl-MLP (formyl-methionyl-leucyl-phenylalanine), a
potent chemo-attractant in bacteria36, 37; phagocytosis
of microorganisms38; and neutrophil-endothelium
expression of adhesion molecules.39 These important
negative effects of PPIs on neutrophil’s function may
relate to alteration of v-type of H+ ATPases on neu-
trophils,40 inhibition of IL-8 derived immune response
or inhibition of formyl-MLP-induced elevation of the
cytosolic calcium concentration in polymorphonuclear
neutrophils.41

INCREASED HOST SUSCEPTIBILITY TO ENTERIC
INFECTION BY USE OF PPI
Bacterial enteropathogens differ as to their acid resis-
tance and pathogenic potential in the face of potent ant-
acid drugs. They will be considered separately here. See
Tables 1–4 for the scientific evidence of an association
between PPI use and specific enteric infection and for
the cited references.

SALMONELLA INFECTIONS
Salmonella is an acid-sensitive microbe associated with
consumption of eggs and poultry products and second-
ary to contact with cold blooded reptiles. Gianella et al.5

found a lack of survival of S. paratyphi and S. enteritis at
pH < 3 whereas at pH > 4 no reduction in bacterial
count was observed. Tennant et al.6 confirmed the same
finding wherein a strain of S. enterica serovar Typhimuri-
um hardly survived at pH < 3.5, but showed increased
survival at pH above 3.5.

Additionally, therapy with PPIs may facilitate Sal-
monella infection by drug effects on neutrophils, which
are the predominant inflammatory cells against non-
typhoid Salmonella enteric infection. PPIs may also
enhance susceptibility to Salmonella by facilitating the
effects of Salmonella on the tight junctions in the
intestinal epithelium.42, 43 PPI action on resident intes-
tinal microflora, pro-inflammatory cytokines and other
local mechanisms could influence the pathogenicity of
strains of Salmonella. See Table 1 for data on the
association of PPI use and infection by Salmonella
and references for the various studies. A clear associa-
tion was found between PPI use and increased suscep-
tibility to Salmonella gastroenteritis in two case control
studies with adjusted relative risk ranging from 4.2 to
8.3.

CAMPYLOBACTER JEJUNI INFECTIONS
C. jejuni is a poultry- and travel-associated enteric path-
ogen. The organism is more susceptible to gastric acid
than Salmonella.44 Waterman and Small45 recovered very
few colonies of C. jejuni on exposure to acidified Luria–
Bertani broth at a relative high pH of 4 and 5. However
C. jejuni showed increased survival at pH 6, a pH possi-
bly seen with high doses of PPIs. See Table 2 for data on
the association of PPI use and alteration of host suscepti-
bility to strains of C. jejuni along with published refer-
ences on the topic. Four studies, all case-control
evaluations, showed an association between Campylobac-
ter diarrhoea and PPI use with adjusted relative risk
ranging from 3.5 to 11.7.
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DIARRHOEAGENIC ESCHERICHIA COLI
Diarrhoea-producing E. coli strains show decreased sur-
vival at pH < 3.5.5 Strains of E. coli appear to be more acid
stable than strains of Salmonella in complex media. How-
ever, the minimum pH supporting bacterial proliferation
is 4.4 for strains of E. coli compared with 4.0 for strains of
Salmonella.46 Also, E. coli are equipped with multiple
complex pH dependent acid tolerance strategies, enabling
them to survive in the acidic pH of the stomach.47 A high
gastric pH created by PPIs may facilitate the pathogenesis
of E. coli diarrhoea. In an adult volunteer challenge study,
invasive E. coli produced diarrhoea only when the organ-
isms were administered after neutralising gastric acid with
sodium bicarbonate showing the importance of reducing
gastric acidity in the development of diarrhoea caused by
this organism.48 More studies are needed to specifically
determine the association of PPI use and susceptibility to
the various diarrhoea-producing E. coli strains including
enterotoxigenic E. coli (ETEC), common in travellers, Shi-
ga toxin producing E. coli (STEC), an important food-
borne pathogen, and enteroaggregative E. coli (EAEC), an
important cause of paediatric diarrhoea, travellers’ diar-
rhoea and AIDS-associated diarrhoea.

CLOSTRIDIUM DIFFICILE
C. difficile is the most commonly identified cause of
nosocomial diarrhoea. The association between PPIs
and CDI has been better studied than potential
associations between PPI use and other enteric infec-
tions. C. difficile exists in two forms: an acid-sensitive
vegetative form and an acid-resistant spore form. Both
vegetative bacteria and spores are excreted in the faeces
of infected people with vegetative forms generally found
in 10-fold greater numbers than spores.49 Based on the
observations from in vitro studies49 and animal mod-
els,50, 51 most ingested vegetative cells fail to survive
normal gastric acidity. The spores, however, survive in
low gastric pH and readily pass into the small bowel.
The spores then germinate in the small bowel under
favourable conditions liberating the toxigenic vegetative
forms.

Vegetative cells of C. difficile are important in the
pathogenesis of CDI. Jump et al. 49 showed that vege-
tative C. difficile can remain viable for up to 6 h on
moist surfaces in room air. So along with spores, vege-
tative forms of C. difficile are also a potential source
of infection. Vegetative forms have shown to survive

Table 1 | Published studies of the relationship between use of PPIs and development of non-typhoid Salmonella
gastroenteritis

Reference Study description
Strength of association
(with 95% CI)*,� Comments

(83) Nested case control study: 374
cases and 2000 controls

The article established CI for
bacterial diarrhoea, not
specifically for the subgroup
with Salmonella infection

A relative risk of 1.6 (1.0–2.4) was reported
between PPI use and bacterial
gastroenteritis in general. Among the 374
total diarrhoea cases in the study, 136
(36.4%) cases were caused by Salmonella.

(84) Case control study: 167
S. enteritidis, 193
S. typhimurium cases
and 3119 controls

S. enteritidis: 4.2 (2.2–7.9)
S. typhimurium: 8.3 (4.3–15.9)

Population attributable risk was also
observed to be very high for PPIs.

(85) Case control study:
6414 cases and 50 000
controls

The article established CI for
bacterial diarrhoea, not for
the subgroup with Salmonella

A relative risk of 2.9 (2.5–3.5) was reported
between PPI use and bacterial
gastroenteritis in general. Among the 6414
total diarrhoea cases in the study,
1885 (29.4%) cases were caused by
Salmonella.

(86) Case control study:
573 cases and 3409 controls

4.3 (2.9–6.5) The association was reported for PPI use
and recurrent cases of Salmonella
gastroenteritis.

CI, confidence interval; PPI, proton pump inhibitor.

* Strength of association: multivariate odds ratio or relative risk is reported wherever possible rather than univariate values.

� Values were rounded to nearest first decimal wherever necessary.
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in gastric contents at pH > 5 allowing them to directly
colonise the intestinal tracts of susceptible hosts.49

Spores are considered to be the major vector for trans-
mission of CDI. The timing and the factors needed
for the initiation of germination of C. difficile spores
are not clearly understood. In a hamster model, 80%
of C. difficile spores germinate in the small intestine
within 1 h of intra-gastric ingestion with germination
being related to exposure to bile salts.50 A mouse
model demonstrated initiation of germination in the
small intestine and caecum. In the presence of bile
salts and amino acids, germination was observed in
the stomach.51 Bile salts have been detected in the gas-
tric contents of patients with GERD and also in nor-
mal people.52 In vitro studies show that the minimum
concentration of bile salts required for germination of
C. difficile spores is 0.1 mmol ⁄ L and 10 mmol ⁄ L for
sodium taurocholate and chenodeoxycholate, respec-
tively,53 such concentrations have been observed in

GERD patients.54–56 Under conditions of high pH
induced by PPIs and in the presence of bile salts in
the stomach, the intra-gastric milieu could be favour-
able for propagation of C. difficile vegetative cells and
for conversion of spores to vegetative cells promoting
the development of CDI.

Antibiotics are the most common host risk factors for
CDI whereby the normal microbiota in the gut is altered
eliminating the homeostatic influence of the flora and
providing opportunity for growth of C. difficile. Prior
antibiotic use is more important in the development of
CDI than PPI use.19, 57–59 Antibiotics and PPIs used
concurrently, a common situation in clinical settings,
appear to work together in an additive fashion for
increasing the susceptibility to CDI. Among the other
mechanisms which can be speculated are the action of
PPI on H+) K+ ATPases found in the colon60 and the
immunological actions of PPI as discussed earlier. To
date, 27 published studies have been conducted evaluat-

Table 2 | Published studies of the relationship between Campylobacter jejuni diarrhoea and use of PPIs

Reference Study description
Strength of association
(with 95% CI)*,� Comments

(87) Case control study: 211 cases
and 422 controls

11.7 (2.5–54.0) Omeprazole use within 1 month
before infection showed the
strongest association.

(88) Case control study: 313 cases
and 512 controls

3.5 (1.1–12.0) Foreign travel explained 25% of
cases of Campylobacter diarrhoea

(83) Nested case control study:
374 cases and 2000 controls

The article established CI for
bacterial diarrhoea, not for
the subgroup with
Campylobacter

A relative risk of 1.6 (1.0–2.4) was
reported between PPI use and
bacterial gastroenteritis in general.
Among the 374 total diarrhoea
cases in the study, 201 (53.7%)
cases were caused by Campylobacter.

(85) Case control study: 6414 cases
and 50 000 controls

The article established CI for
bacterial diarrhoea, not for
the subgroup with
Campylobacter

A relative risk of 2.9 (2.5–3.5) was
reported between PPI use and
bacterial gastroenteritis in general.
Among the 6414 total diarrhoea
cases in the study, 4124 (64.3%)
cases were caused by
Campylobacter.

(86) Case control study: 1446 cases
and 3409 controls

4.5 (3.3–6.1) PPI use and recurrent cases of
Campylobacter gastroenteritis were
associated.

(89) Case control study: 1,019 cases
and 3119 controls

4.3 (2.9–6.2) For elderly patients, the OR was
observed to be 2.9 (1.5–5.7).

CI, confidence interval; PPI, proton pump inhibitor.

* Strength of association: multivariate odds ratio (OR) or relative risk is reported wherever possible rather than univariate values.

� Values were rounded to nearest first decimal wherever necessary.
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ing an association between the use of PPIs and enhanced
susceptibility to CDI. Most of the studies were hospital-
based except for five studies looking at community-asso-
ciated CDI. Seventeen studies identified a significant
association of PPI use with higher rates of development
of CDI (adjusted relative risk ranging from 1.2 to 5.0),
while ten studies failed to show an association. See
Table 3 for specific studies examining the relationship
between PPI use and development of CDI. Three retro-
spective cohort studies found an association between PPI
use and development of recurrent CDI (RCDI) (adjusted
relative risk range from 1.4 to 4.2).61–63 See Table 4 for
studies examining the relationship between PPI use and
development of RCDI.

SHIGELLA
Shigellosis is a common form of dysenteric diarrhoea.
The low inoculum size needed for infection explains
the propensity of the organism to be spread from per-
son-to-person. Shigella strains are often more acid resis-
tant than strains of Salmonella and can survive in
acidic complex media.46, 64 Strains of Shigella can sur-
vive exposure to acid in the stomach trap, which is dif-
ferent than many other bacterial organisms.65 There
have been no studies evaluating the association between
shigellosis and PPI use. However, it is unlikely that PPI
use would increase susceptibility to infection by Shigella
strains due to their low inoculum requirements and rel-
ative acid resistance.

VIBRIO CHOLERAE 01
V. cholerae, the cause of cholera and an important cause
of dehydrating diarrhoea in endemic areas of the devel-
oping countries, is very acid sensitive.66 Studies have
provided evidence that those experiencing cholera in
endemic areas are preselected based on their reduced
basal gastric hydrochloric acid.67–69 In human challenge
studies, a strain of V. cholerae produced disease only
after first reducing gastric acidity of the volunteers.70

One study carried out in 1989, which examined an out-
break in Thailand, showed an increased association of
antacid use among the cholera cases.71 More studies are
needed to directly link PPI use with enhanced suscepti-
bility to cholera.

LISTERIA
Strains of Listeria show various degrees of susceptibil-
ity to gastric acid. In general, Listeria is susceptible to
a pH £ 2 with increased survival at pH ‡ 5.72, 73

Strains of Listeria have been isolated from the stools

of patients receiving H2 blockers.74 In an outbreak of
Listeria infection, enhanced susceptibility to the organ-
ism was associated with cimetidine treatment.75 While
no studies have been carried out to look at PPI use
and increased susceptibility to infection by strains of
Listeria, it is likely that people on PPIs will be more
susceptible to this organism that is capable of causing
fatal disease in the elderly or in the immunocompro-
mised patients.

DISCUSSION AND CONCLUSIONS
In spite of clear evidence that reduced gastric acidity
facilitates intestinal infection by bacterial enteropatho-
gens, the magnitude of the enhanced susceptibility to
diarrhoea by chronic PPI use is not clear. Decreased gas-
tric acidity caused by PPI use has important implications
for the survival of intestinal bacteria including entero-
pathogenic forms with potential to colonise, invade or
inflame the intestine. For Salmonella and C. jejuni
strains, the relatively few published studies report a sig-
nificant association of enteric infection with PPI use.
This association is best studied for CDI which has the
greatest importance for hospitalized persons or for peo-
ple confined to nursing homes and other facilities. Not
all studies have shown an association of PPI use and
increased susceptibility to CDI. The studies failing to
show an association between PPI use and CDI involved
predominantly patients ‡ 65 years of age. It is likely that
in persons of advanced age with their high rate of under-
lying hypochlorhydria76 and presence of co-morbid dis-
eases, the addition of PPI may not confer important
additional risk.

In this review, we have proposed potential mecha-
nisms to help in understanding the association between
PPI use and CDI. The incidence of CDI is increasing
rapidly due to two important reasons – increasing
virulence of C. difficile strains and increasing host
vulnerability with a rapidly growing elderly and infirm
population.77

It is common for hospitalized patients to receive
PPIs prophylactically to prevent gastric complications
including GI bleeding. PPI are probably overused and
may be associated with significant health-care expendi-
ture.78 Prevention of stress ulcers in hospitalized
patients and treatment of functional dyspepsia are com-
mon indications for this class of drugs.79 A short
course of PPI may be very helpful in selected patients
but discontinuing PPI therapy should be considered in
patients who are asymptomatic or about to receive
broad-spectrum antibiotics known to have important
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Table 3 | Published studies of the relationship between CDI and use of PPIs

Reference Type of study Study description

Strength of
association
(with 95% CI*,�) Comments

(90) Hospital based Case control study: 126 cases
and 126 controls

0.9 (0.5–1.5)� An association between PPI use and
CDI was not seen in a group of
elderly subjects.

(91) Hospital based Case control study: 27 cases
and 27 controls

3.0 (0.8–11.0) H2 blockers§ were also evaluated and
showed no significant association.

(92) Hospital based Case control study: 160 cases
and 160 controls

2.5 (1.5–4.2) PPI use the preceding 8 weeks was
associated with increase in CDI risk.

(93) Hospital based Cohort study: 1,187 subjects 2.1 (1.2–3.5) H2 blockers were also evaluated and
showed no significant association.

(93) Hospital based Case control study: 94 cases
and 94 controls

2.7 (1.4–5.2) Patients in the hospital who received
PPIs were at increased risk for CDI.

(94) Community based Case control study: 1,233 cases
and 12,330 controls

2.9 (2.4–3.4) H2 blockers were also evaluated and
showed significant association.

(95) Hospital based Case control study: 203 cases
and 203 controls

2.4 (1.3–4.4) Hospital outbreak of CDI was
studied.

(96) Hospital based Case control study: 50 cases
and 200 controls

3.4 (1.7–6.8) H2 blockers were also evaluated and
showed no significant association.

(59) Hospital based Retrospective cohort study:
5,619 subjects

1.0 (0.8–1.3) H2 blockers were also evaluated and
showed no significant association.

(97) Community based Case control study: 317 cases
and 3,167 controls

3.5 (2.3–5.2) Cases of CDI were identified by first
identifying oral use of vancomycin.

(98) Hospital-based Case control study: 64 cases
and 128 controls

5.0 (1.3–19.4) Hospital outbreak of CDI cases was
studied.

(99) Community based Population based nested case
control study: 1389 cases and
12 303 controls

0.9 (0.8–1.1) Study in old age patients,
age ‡ 66 years.

(57) Hospital based Case control study: 155 cases
and 153 controls

1.9 (1.1–3.3) PPI use in the preceding 3 months
was associated with increase in
CDI risk.

(100) Hospital based Case control study: 640 cases
and 650 controls

1.7 (1.4–2.2) Study in African American and
Hispanics population.

(58) Hospital based Cohort study: 827 subjects 0.9 (0.6–1.4) Mean duration of PPI use was
8.9 days. H2 blockers were also
evaluated and showed no significant
association.

(101) Hospital based Retrospective cohort study:
36 086 subjects

1.6 (1.3–2.1) H2 blockers were also evaluated and
showed significant association.

(102) Hospital based Nested Case control study:
382 cases and 1,528 controls

4.1 (3.2–5.2) H2 blockers were also evaluated
showing significant association.

(103) Hospital based Case control study: 122 cases
and 244 controls

2.8 (1.7–4.5) H2 blockers were also evaluated and
showed no significant association.

(104) Hospital based Case control study: 184 cases
and 184 controls

0.8 (0.5–1.4)� H2 blockers were also evaluated and
showed no significant association.

(105) Hospital based Case control study: 94 cases
and 94 controls

3.6 (1.7–8.3) Environmental factors were controlled
between case and control subjects.
H2 blockers were also evaluated and
showed no significant association.
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effects on gut flora. Non-pharmacological measures such
as watchful observation (many cases of dyspepsia
resolve on their own), life style modifications such as
eating smaller meals well before sleep, weight reduction,
smoking cessation and stress reduction79 may be useful
in many cases. The Public Health Agency of Canada
has issued an advisory on their website that PPIs may
increase the risk of CDI.

There are other recommendations for decreasing CDI
in the hospital. Thachil J et al.80 suggested having a ‘hos-
pital antacid policy’ to prevent irrational drug use and to
withhold PPI while the patient receive broad-spectrum
antibiotics during hospital admissions. Metz81 recom-
mended giving the lowest effective dose of PPIs in hospi-
talized patients while providing optimal hygiene

measures such as enteric precautions and strict and
effective hand washing, limiting unnecessary antibiotic
exposure. Heidelbaugh JJ et al.78 suggested using phar-
macy-driven step-down orders and prescribing on
demand PPI therapy only after ascertaining its rationale
through case by case evaluation.

Patients on PPIs should be informed that they are
more susceptible to bacterial diarrhoea and they should
exercise care in eating higher risk foods such as poorly
cooked ground beef, unpasteurized milk or cheese or
moist foods served at room temperature at restaurants.
These people may also be at considerable risk of acquir-
ing various enteric infections during travel to tropical
and semi-tropical regions of the developing world. The
International Society of Travel Medicine identified PPI

Table 3 | (Continued)

Reference Type of study Study description

Strength of
association
(with 95% CI*,�) Comments

(106) Hospital based Case control study: 1142 cases
and 3351 controls

1.2 (1.03–1.5) Use of PPI in the 60 days before
index date was associated with
increased risk of CDI.

(107) Hospital based Retrospective cohort study:
14 719 subjects

2.0 (1.4–2.7) The increased risk of acquiring CDI
with PPI use in the hospital relates
to the frequency of CDI in the
population.

(108) Community based Nested case control study:
836 cases and 8360
controls

1.6 (1.3–2.0) H2 blockers were also evaluated and
showed significant association. Older
age patients, age ‡ 65 years
studied.

(109) Community based Case control study: 40 cases
and 112 controls

1.1 (0.1–7.2)� The study reported only 2 cases of
PPI users among cases of CDI.

(110) Hospital based Case control study: 45 cases
and 90 controls

1.1 (0.5–2.6) The various risk factors for hospital
acquired CDI were evaluated.

(111) Hospital based Prospective Case control
study: 93 cases and 76
controls

1.1 (0.5–2.6) Studied the risk factors for CDI in
an endemic setting.

(19) Hospital based Cohort study: 1 01 796
subjects

For daily PPI use:
1.7 (1.4–2.2)
More frequent
than daily PPI
use: 2.4 (1.8–3.1)

H2 blockers were also evaluated and
showed significant association

The authors identified the
combination of acid suppression and
antibiotic exposure as the principal
risk factors for CDI.

CI, confidence interval; PPI, proton pump inhibitor; CDI, C. difficile infection.

* Strength of association: multivariate odds ratio (OR) or relative risk is reported wherever possible rather than univariate values.

� Values were rounded to nearest first decimal wherever necessary.

� Calculated from the data given in the study article.

§ Type 2 histamine receptor blockers.
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use as a risk factor for developing travellers’ diarrhoea
and suggested that consideration be given to administer-
ing daily chemoprophylaxis to prevent illness in PPI
users during travel to high risk areas of Latin America,
Africa or Southern Asia.82
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