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Quantitative phosphoproteomic analysis of the 
molecular substrates of sleep need
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Chiyu Lee1, tomoyuki Fujiyama1, Xiaojie Yang1, Shuang Zhou3, Noriko Hotta-Hirashima1, Daniela Klewe-Nebenius1,  
Aya Ikkyu1, Miyo Kakizaki1, Satomi Kanno1, Liqin Cao1, Satoru takahashi4, Junmin Peng2, Yonghao Yu5, Hiromasa Funato1,6*, 
Masashi Yanagisawa1,7,8* & Qinghua Liu1,3,9,10*

Sleep and wake have global effects on brain physiology, from 
molecular changes1–4 and neuronal activities to synaptic plasticity3–7. 
Sleep–wake homeostasis is maintained by the generation of a 
sleep need that accumulates during waking and dissipates during 
sleep8–11. Here we investigate the molecular basis of sleep need using 
quantitative phosphoproteomic analysis of the sleep-deprived and 
Sleepy mouse models of increased sleep need. Sleep deprivation 
induces cumulative phosphorylation of the brain proteome, which 
dissipates during sleep. Sleepy mice, owing to a gain-of-function 
mutation in the Sik3 gene12, have a constitutively high sleep need 
despite increased sleep amount. The brain proteome of these mice 
exhibits hyperphosphorylation, similar to that seen in the brain 
of sleep-deprived mice. Comparison of the two models identifies 
80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), 
in which phosphorylation states closely parallel changes of sleep 
need. SLEEPY, the mutant SIK3 protein, preferentially associates 
with and phosphorylates SNIPPs. Inhibition of SIK3 activity 
reduces phosphorylation of SNIPPs and slow wave activity during 
non-rapid-eye-movement sleep, the best known measurable 
index of sleep need, in both Sleepy mice and sleep-deprived wild-
type mice. Our results suggest that phosphorylation of SNIPPs 
accumulates and dissipates in relation to sleep need, and therefore 
SNIPP phosphorylation is a molecular signature of sleep need. 
Whereas waking encodes memories by potentiating synapses, sleep 
consolidates memories and restores synaptic homeostasis by globally 
downscaling excitatory synapses4–6. Thus, the phosphorylation–
dephosphorylation cycle of SNIPPs may represent a major 
regulatory mechanism that underlies both synaptic homeostasis 
and sleep–wake homeostasis.

Homeostatic sleep regulation is a global, intrinsic and cumulative 
process that ultimately involves most brain cells and regions3,5,7; this 
is distinct from executive switching between sleep and wake states, 
which is controlled by specific neural circuits13,14. We hypothesize 
that the molecular substrates of sleep need satisfy four criteria: 1) they 
should be globally and similarly regulated in most brain cells or regions;  
2) they should accumulate gradually during waking and dissipate 
through sleep; 3) they should change in parallel with sleep need in 
different contexts; and 4) gain or loss of these functions should cause 
bidirectional changes of sleep need.

Sleep deprivation increases sleep need in mice, as shown by enhanced 
slow wave activity (SWA) or delta power (1–4 Hz) of electroencephalog-
raphy (EEG) during non-rapid-eye-movement sleep (NREMS), which 
declines rapidly to the baseline followed by rebound sleep in early dark 
phase8,10,12 (Fig. 1a, Extended Data Fig. 1a–e). We recently identified 
a dominant mutation in Sleepy mice12, Sik3Slp/+, in which a single 

nucleotide substitution in the gene for salt-inducible kinase 3 (SIK3), a 
member of the AMP-activated protein kinase (AMPK) family15, causes 
constitutively high sleep need, manifested by elevated SWA and dura-
tion of NREMS (Extended Data Fig. 1f–i). Sleep deprivation increases 
wake time, whereas the Sleepy mutation decreases wake time; yet both 
cause elevated sleep need. We hypothesized that cross-comparison  
of these contrasting models of increased sleep need would reveal spe-
cific molecular changes associated with sleep need by filtering out 
non-specific effects of prolonged sleep, wake and stress.

We subjected three groups of wild-type C57BL/6N mice, at Zeitgeber 
time (ZT) zero, to 6 h of ad libitum sleep (S6) or sleep deprivation 
(SD6), or 6 h of sleep deprivation followed by a 3-h recovery sleep 
(RS3), respectively (Fig. 1a). We collected brains from wild-type 
(Sik3+/+) and Sleepy (Sik3Slp/+) mice at ZT12.5, the lowest point of 
SWA in wild-type mice (Fig. 1a). As shown by immunoblotting with 
antibodies against 14 phosphorylated substrate motifs, global phos-
phorylation of substrates of AMPK, protein kinase C (PKC), protein 
kinase A (PKA) and ‘ataxia telangiectasia mutated’ (ATM) and ‘ATM 
and RAD3-related’ (ATR) kinases was specifically increased in brains 
of both Sleepy mice and wild-type SD6 mice, but was not affected by 
fasting (Fig. 1b, c and Extended Data Figs. 2, 3). By contrast, other 
signalling pathways, such as casein kinase II (CK2) or tyrosine kinases, 
were not significantly affected (Fig. 1c and Extended Data Fig. 2). These 
observations indicate that similar kinase pathways are globally activated 
in Sleepy and sleep-deprived brains.

Next, we performed quantitative proteomic and phosphoproteomic 
studies of whole brain lysates using multiplex tandem mass tag (TMT)  
labelling coupled with liquid chromatography–mass spectrometry  
(LC–MS)16–19 (Fig. 1a). A total of 4 proteomic and 13 phospho-
proteomic experiments was performed (Supplementary Tables 1, 2). 
The amount of peptides or phosphopeptides corresponding to exon 
13, which is not translated in the Sik3Slp mutant allele, was specifically 
reduced by 40% in Sik3Slp/+ relative to Sik3+/+ samples (Fig. 1d, g and 
Extended Data Fig. 4a); this acted as a stringent internal control. In 
summary, brain proteomic analysis quantified 7,963 proteins, of which 
5,280 were present in all conditions in the pairwise comparisons of 
SD6 and RS3 (5,769 proteins), SD6 and S6 (6,067 proteins), and Sleepy 
and wild-type (7,650 proteins) groups (Extended Data Fig. 4b–h, 
Supplementary Table 1). Phosphoproteomic analysis quantified a total 
of 62,384 unique phosphopeptides from 7,104 phosphoproteins and 
identified 51,821 phosphorylation sites (Supplementary Table 2a).

Few quantified peptides or proteins showed significant changes in 
abundance (Q < 0.2) in the comparisons of brain proteomes between 
Sleepy and wild-type (0.09%; 3.5%), SD6 and RS3 (0.01%; 0%), or 
SD6 and S6 (0%; 0.01%) samples (Fig. 1d–f and Extended Data 
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Fig. 4g), suggesting that the whole brain proteome was globally stable 
(Supplementary Discussion 1). By contrast, comparison of the brain 
phosphoproteomes showed that a sizable portion of phosphopeptides 
exhibited significant changes (Q < 0.2) between the SD6 and RS3 
(12.4%), SD6 and S6 (4%), and Sleepy and wild-type (18.3%) conditions 
(Fig. 1g–j). In sleep-deprived brains, the majority of changes in phos-
phorylation are increases: SD6/RS3 (3,551/4,293, 82.7%) or SD6/S6 
(1,198/1,381, 86.7%) (Fig. 1h, i). The mean abundance of 918 phospho-
peptides that were changed in both SD6/RS3 and SD6/S6 groups was 
around 32% or around 25% lower in S6 or RS3 brains, respectively, than 
in SD6 brains (Fig. 1j, k). This asymmetric increase in phosphorylation 
was not observed in the liver phosphoproteome after sleep deprivation 
(Extended Data Fig. 5). Instead, the liver phosphoproteome showed 
decreases in global phosphorylation in these comparisons: SD6/S6 
(1,275/2,186, 58.3%) and SD6/RS3 (286/433, 66.1%) (Extended Data 
Fig. 5b, c). These studies suggest that sleep and wake have opposing 
effects on the brain phosphoproteome: prolonged wakefulness causes 
hyperphosphorylation, whereas sleep promotes global dephosphoryl-
ation of the brain proteome.

Comparison of Sleepy and sleep-deprived models reveals 329 phos-
phopeptides that are significantly (Q < 0.2) altered in all three (Sleepy/

wild-type, SD6/S6 and SD6/RS3) comparisons (Fig. 1j). On the basis of 
the mean abundance of each of these 329 phosphopeptides, unsuper-
vised cluster analysis groups Sleepy samples with SD6 samples, whereas 
wild-type samples cluster with S6 and RS3 samples (Fig. 1l). We used 
antibodies against specific phosphorylation sites to confirm hyper-
phosphorylation of multiple proteins in both Sleepy and SD6 samples 
(Extended Data Fig. 4i, j). These results suggest that Sleepy mutant 
brains exhibit a global hyperphosphorylation of proteins, mimicking 
that seen in sleep-deprived brains.

Protein functions can be switched on or off by site-specific phos-
phorylation, or modulated by cumulative phosphorylation of multiple 
sites20–23. We noted a group of proteins containing multiple phospho-
rylation sites that appear to be co-ordinately regulated in both Sleepy 
and SD6 models (Extended Data Fig. 6a, b). For example, the synaptic 
vesicle protein synapsin-1 contains multiple functionally important 
phosphorylation sites21,22, almost all of which are hyperphosphorylated 
in brains of sleep-deprived or Sleepy mice (Fig. 2a and Extended Data 
Fig. 6a). We measured overall phosphorylation state change (∆Ps) of 
synapsin-1 by calculating the sum of log2(fold change) values of all  
significantly (Q < 0.2) changed synapsin-1 phosphopeptides. 
Synapsin-1 has ∆Ps values of 7.5, 5.5 and 13.7 in the SD6/RS3, 
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Fig. 1 | Brains of Sleepy mutant mice exhibit hyperphosphorylation  
that mimics that in sleep-deprived brains. a, Experimental design  
for proteomic and phosphoproteomic analysis of two models.  
b, Representative immunoblots of brain lysates with antibody specific  
for AMPK target phosphorylation motifs. Blots represent three  
(sleep-deprived) or two (Sleepy) independent experiments.  
c, Quantitative analysis of immunoblots using specific antibodies for 
different phosphorylated protein motifs. n = 12 (S6), 9 (SD6, RS3),  
6 (wild-type (WT), Sleepy (Slp)). Mean ± s.d., two-way ANOVA, Fisher’s 
least significant difference (LSD). d–i, Volcano plots showing changes in 

peptides (d–f) and phosphopeptides (g–i) in Sleepy/wild-type, SD6/RS3 
and SD6/S6 comparisons. Multiple unpaired t-test (P value) followed by 
false discovery rate (FDR) (Q value) analysis. In, increase; De, decrease. 
j, Venn diagram of significantly changed phosphopeptides among three 
groups, with the number of significantly changed phosphopeptides in  
each experiment shown in parentheses. k, Analysis of mean abundance  
of 918 phosphopeptides that are changed in both SD6/RS3 and SD6/S6  
comparisons. Mean, one-way ANOVA, Dunnett’s test. l, Hierarchical 
cluster analysis of 329 phosphopeptides that are changed in all three 
groups. *P < 0.05; ‡P < 0.001; NS, not significant (P > 0.05).
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SD6/S6 and Sleepy/wild-type comparisons, respectively (Fig. 2a). 
Hyperphosphorylation of synapsin-1 in Sleepy and SD6 brain lysates 
was confirmed by phospho-tag gel electrophoresis (Fig. 2b).

Next, we performed global phosphorylation state change analy-
sis for all quantified phosphoproteins in our datasets (Fig. 2c–e and 
Supplementary Table 3). In the sleep-deprived model, the phosphoryl-
ation state of 151 and 45 proteins is significantly upregulated (hyper-
phosphorylated, ∆Ps > 2.4) in SD6 brains relative to RS3 or S6 brains, 
respectively (Fig. 2c, d). The phosphorylation state of 190 proteins 
is significantly upregulated, whereas the phosphorylation state of 52 
proteins is downregulated (hypophosphorylation, ∆Ps < −2.4) in the 
brains of Sleepy mice in comparison to those of wild-type mice (Fig. 2e). 
Cross-comparison of sleep-deprived and Sleepy models identified 80 
hyperphosphorylated proteins, which we termed the sleep-need- 
index-phosphoproteins (SNIPPs), whose cumulative changes in phos-
phorylation state parallel those of sleep need in both models (Extended 
Data Fig. 7a).

Notably, 69 (>86%) of the 80 SNIPPs are annotated as synaptic  
proteins (Fig. 2f, Extended Data Fig. 7b and Supplementary Table 4a, b),  
whereas only 20% of the total phosphoproteins are annotated as syn-
aptic proteins. A literature search reveals that mutations of 12 (15%) of 
the 80 SNIPPs cause sleep phenotypes in mice or humans (Fig. 2g and 
Supplementary Table 4a). Furthermore, we analysed published phos-
phoproteomic data of post-synaptic density (PSD) fractions from 
mouse forebrains collected in normal sleep (S4) and wake (W4) 
states4 (Fig. 2h and Supplementary Table 5). Approximately 70% of  
phosphorylation changes observed in PSD fractions are increases, 
and the mean ∆Ps value of the 80 SNIPPs is significantly increased 
in accordance with higher sleep need in wake brains relative to sleep 
brains (Fig. 2i and Extended Data Fig. 6c, d). These observations sug-
gest a potential mechanistic link between the synaptic phosphopro-
teome and homeostatic sleep regulation (Supplementary Discussion 2).

Because synaptic activities underlie waking experience, we hypoth-
esize that SNIPPs track waking experience through cumulative  
phosphorylation. To test this hypothesis, we conducted a time-course 

sleep deprivation followed by quantitative phosphoproteomic analysis 
(Fig. 3a). Comparison of SD1, SD3 or SD6 and SD0 samples reveals a 
time-dependent increase in the number of phosphorylation events in 
whole-brain phosphoproteome (Fig. 3b). ∆Ps analysis indicates that 
the mean phosphorylation states of 80 SNIPPs gradually rise with 
the duration of sleep deprivation (Extended Data Fig. 6e), with many 
SNIPPs showing time-dependent cumulative phosphorylation (Fig. 3c, 
class A–C).

MK801, a specific inhibitor of N-methyl-d-aspartate receptor 
(NMDAR), has previously been identified as a potent inducer of SWA 
in rodents24–26. Our quantitative phosphoproteomic analysis of this 
pharmacological model identified 31 hyperphosphorylated proteins 
(∆Ps > 2.4) in the MK801 model compared to vehicle-only control, 
of which 25 (80%) are annotated as synaptic proteins (Fig. 3d, e and 
Extended Data Fig. 8). The MK801, Sleepy and sleep-deprived models 
have 21 SNIPPs in common (Extended Data Fig. 8j), 13 of which accu-
mulate phosphorylation in a time-dependent manner (Fig. 3f). These 
13 SWA-SNIPPs not only serve as a reliable molecular indicator of SWA 
or sleep need in multiple models, but also may contribute critically to 
regulation of SWA, a macro-electrophysiological readout of synaptic 
functions5,7 (Supplementary Discussion 3).

To examine whether SNIPPs are substrates of SLEEPY (the protein 
encoded by Sik3Slp), we compared the interactomes of SLEEPY and 
wild-type SIK3 by immunoprecipitation and mass spectrometric analy-
sis using whole-brain lysates from Flag-HA-Sik3Slp and Flag-HA-Sik3+ 
knock-in mice12 (Extended Data Fig. 9a and Supplementary Table 6). 
SLEEPY preferentially associated with synaptic proteins, including 28 of 
80 SNIPPs (Fig. 4a and Extended Data Fig. 9b, c). Immunoprecipitation 
and western blotting confirmed enhanced associations between 
SLEEPY and SNIPPs such as the pre-synaptic active zone protein 
bassoon, synaptic RAS GTPase-activating protein 1 (SYNGAP1) and 
NMDAR subunits NR2B and NR1 (Fig. 4b).

We applied the AMPK Motif Analyzer to predict 2,943 phospho-
peptides as potential AMPK substrates27 in the Sleepy/wild-type  
phosphoproteome dataset (Extended Data Fig. 9d and Supplementary 
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Table 4c). Among these, 625 phosphopeptides were significantly 
changed (Q < 0.2) in Sleepy brains in comparison to wild-type brains, 
462 of which were hyperphosphorylated in Sleepy brains (Extended 
Data Fig. 9d). The 28 SNIPPs that interact with SLEEPY contain 47 
putative AMPK sites that are differently phosphorylated in Sleepy 
brains, of which 40 (85%) are hyperphosphorylated in Sleepy brains 
(Extended Data Fig. 9e). Recombinant SLEEPY and SIK3 exhibited 
similar in vitro kinase activities (Extended Data Fig. 9f), suggesting that 
SLEEPY itself does not have increased kinase activity. Taken together, 
these observations suggest that SLEEPY may increase phosphorylation 
of SNIPPs by enhancing kinase–substrate association.

Next, we attempted to rescue the phenotypes of Sleepy mice by 
intracerebroventricular injection of the pan-SIK inhibitor HG-9-
91-0128 (HG) to inhibit SLEEPY or SIK3 kinase activity (Fig. 4c). 
Administration of HG significantly reduced phosphorylation of AMPK 
substrates, particularly phosphorylation of the 28 SLEEPY-interacting 
SNIPPs (Extended data Fig. 9g–i). Consistent with this, HG treatment 
of Sleepy mice reduced phosphorylation of SNIPPs and SWA, but not 
duration, of NREMS (Fig. 4d, e, h, i and Extended Data Fig. 9j–m). 
Similarly, HG treatment of sleep-deprived wild-type mice reduced 
phosphorylation of AMPK substrates, phosphorylation of SNIPPs and 
SWA of NREMS (Fig. 4f, g, j, k and Extended Data Fig. 10), suggesting 
that SIK3 and SNIPPs have a critical role in normal homeostatic sleep 
regulation.

We hypothesize that a core set of SNIPPs monitor the duration and 
richness of prior waking through cumulative phosphorylation, which 
translates into a corresponding sleep need that determines the quality  
and duration of subsequent sleep11 (Fig. 4l and Supplementary 
Discussion 4). Whereas prolonged wakefulness leads to cognitive 
impairment and sleepiness, sleep refreshes the brain through multiple  
restorative effects and optimizes cognitive functions for the next 
waking period5,7,9,11. Specifically, the synaptic homeostasis hypoth-
esis posits that waking encodes memories by potentiating synapses, 
whereas sleep consolidates memories and restores synaptic homeosta-
sis by global downscaling of synaptic strength5. We hypothesize that 
the phosphorylation–dephosphorylation cycle of SNIPPs represent a 
major regulatory mechanism that underlies both synaptic homeostasis  
and sleep–wake homeostasis to maximize cognitive functions of  
the brain.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
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MEthodS
General materials. Tandem mass tag (TMT) isobaric reagents, water and organic 
solvents were purchased from Thermo Fisher Scientific. Titansphere titanium 
dioxide (TiO2) beads were from GL Sciences. Phospho-tag was from Wako Pure 
Chemical Industries. Unless otherwise noted, all other chemicals were from Sigma-
Aldrich or Nacalai Tesque.
Animal studies. All animal experiments were performed according to procedures 
approved by the Institutional Animal Care and Use Committee of University of 
Tsukuba or University of Texas Southwestern Medical Center at Dallas. All mice 
used were males on a C57BL/6N background and were housed under humidity- 
and temperature-controlled conditions (22–25 ± 1 °C) on a 12-h light–dark cycle. 
Food and water were provided ad libitum.
Sleep phenotype analysis. The sleep–wake behaviours were analysed as previously 
described with modifications12. Electroencephalogram (EEG)/electromyogram 
(EMG) data were visualized and analysed using a custom semi-automated staging 
MatLab (MathWorks)-based program, followed by visual inspection. We did not 
apply blinding and only excluded animals with unreadable EEG signals from final 
sleep analysis. In brief, mice were implanted with the EEG/EMG electrodes at the 
age of 8–10 weeks, and EEG/EMG signals were recorded during weeks 12–20. 
Age-matched control and treatment groups of animals were used for each exper-
iment. Following semi-automated analysis of EEG/EMG data, EEG signals were 
subjected to fast Fourier transform analysis for 1 to 30 Hz with 1-Hz bins. Wake was 
defined by low amplitude, fast EEG and high amplitude, variable EMG; NREMS by 
high amplitude, delta (1–4 Hz) frequency EEG and low EMG tonus; and REMS by 
dominant theta (6–9 Hz) frequency EEG and EMG atonia. Absolute and relative 
power spectrum analyses of corresponding states within indicated ZT times were 
performed; for relative power spectrum analysis (%), the EEG power of each fre-
quency bin was expressed as a percentage of the total power over all frequency bins 
(1–30 Hz). Absolute NREMS delta power density (arbitrary units) is determined 
by the delta band of NREMS and normalized to the average NREMS delta power 
during ZT8 to ZT11 of the baseline recording day10; relative delta power density 
(%) is defined by the ratio of delta power (1–4 Hz) to total power of NREMS EEG. 
In circadian variation plots, each data point represents the mean value of NREMS 
delta power or duration in the following 1 h.
Experimental design. To examine how different treatments affect sleep/wake 
behaviours, 3-day baseline EEG/EMG recordings were conducted after mice were 
acclimated for a week. Mice remained in the same recording chamber for a 3–6-
day interval between treatments. No abnormal EEG/EMG signals were confirmed 
during the interval before next treatment.

For the sleep deprivation model, mice were sleep deprived on an automated 
orbital shaker with access to food and water12. A 1-day baseline recording taken 
before sleep deprivation was used as the basal condition. Whole brains or livers 
were collected at ZT6 for ad libitum sleep (S6) and sleep-deprived (SD6, ZT0–ZT6) 
wild-type mice, or at ZT9 for 6-h sleep deprivation followed by 3-h recovery sleep 
(RS3) wild-type mice. For time-course sleep-deprivation, whole brains of wild-type 
mice were collected at ZT0 (SD0) or after 1, 3 or 6 h of sleep deprivation (SD1, SD3, 
SD6). For the Sleepy model, baseline EEG/EMG recording data were used; whole 
brains were collected for Sik3+/+ (wild-type) and Sik3Slp/+ (Sleepy) at ZT12.5. For 
food/water deprivation experiments, sham deprived (old food/water exchanged 
for new food/water) and deprived (all food/water removed at indicated ZT) were 
conducted in both normal sleep and sleep-deprived conditions; whole brains were 
collected at ZT6 for both conditions. For MK801 treatment, we performed intra-
peritoneal injection of mice with vehicle (0.9% saline) followed by 2 mg/kg MK801 
(Sigma-Aldrich). Wild-type mice were injected at ZT17 in the previous dark phase 
followed by EEG/EMG recording at the onset of light phase (ZT0); whole brains 
were collected at ZT23.5, 6.5 h after MK801 administration. For HG-9-91-0128 
(ApexBio) treatment, we performed intracerebroventricular injection of mice 
with vehicle (3% DMSO) followed by 8 mg/kg HG-9-91-01. Sik3Slp/+ mice were 
injected at ZT6 and ZT9; whole brains were collected at ZT11.5. Wild-type mice 
were injected at ZT0 and ZT3 during sleep deprivation (ZT0–ZT6); whole brains 
were collected at ZT6. The organization of sleep experiments and sleep phenotype 
results are listed in Supplementary Table 7b.
Tissue lysate preparation. Mouse tissues (whole brain or liver) were quickly 
dissected at indicated ZT, rinsed with PBS and flash frozen in liquid nitrogen. 
Typically, one mouse brain was homogenized in a glass tissue homogenizer with 
5 ml of lysis buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 2.5% SDS, 2 mM MgCl2) 
freshly supplemented with protease and phosphatase inhibitor cocktail tablets 
(Roche). Tissue homogenates were incubated at room temperature for 30 min and 
centrifuged at 15,000g for 20 min. The supernatant was carefully transferred to a 
new tube without disturbing the pellet. Protein concentration of protein lysates was 
determined using the bicinchoninic acid (BCA) assay (Thermo Scientific Pierce).

For comparison of the SIK3 and SLEEPY interactomes, wild-type, Flag-HA-
Sik3+ and Flag-HA-Sik3Slp knock-in mouse brains were lysed in ice-cold lysis 
buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 

2 mM MgCl2, 15 mM NaF, 10 mM Na4P2O7) freshly supplemented with protease/
phosphatase inhibitors in a glass tissue homogenizer12. After 30 min incubation 
on ice, brain homogenates were centrifuged at 13,000g for 20 min at 4 °C. The 
supernatant was pre-cleared with IgG and Protein G beads for 30 min before immu-
noprecipitation. 50 μl of anti-Flag antibody-conjugated Sepharose beads (A2220, 
Sigma-Aldrich) was added to each pre-cleared lysate and rotated overnight at 4 °C. 
The beads were washed five times with cold wash buffer (20 mM HEPES, pH 7.4, 
150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2 mM MgCl2, 15 mM NaF, 10 mM 
Na4P2O7), 50 μl of elution buffer (2% SDS, 60 mM Tris-HCl, pH 6.8, 50 mM dith-
iothreitol (DTT), 10% glycerol) was then added and rotated for 10 min at 4 °C. 
Protein elution was repeated twice and combined into one eluate, then analysed 
by mass spectrometry and western blotting.
Mass spectrometry sample preparation. Protein lysate sample was reduced with 
DTT and then alkylated with iodoacetamide. Chloroform–methanol precipitation 
of protein lysate was performed, and the precipitate was resuspended in 8 M urea 
buffer. Protein lysate was digested for 2 h with Lys-C (1:100, enzyme to protein; 
Wako), followed by dilution to 2 M urea with 25 mM ammonium carbonate buffer 
(pH 7.8), and trypsin (1:100, enzyme to protein; Thermo Scientific Pierce) diges-
tion overnight at room temperature. After stopping the digestion with 1% formic 
acid, the peptide mixture was subjected to C18 solid-phase extraction (Sep-Pak, 
Waters) for desalting, and subsequently vacuum-centrifuged to near-dryness.

For phosphopeptide enrichment, desalted peptides were resuspended in 1 ml 
phosphopeptide binding buffer (2 M lactic acid/50% acetonitrile (ACN)) and  
centrifuged at 15,000g for 20 min at room temperature. The supernatant was care-
fully transferred to a new tube without disturbing the pellet. TiO2 beads were 
washed three times with phosphopeptide binding buffer, added to the supernatant 
(peptide mixture) and incubated with gentle rotation for 1 h at room temperature. 
Afterwards, TiO2 beads were washed twice with phosphopeptide binding buffer 
and twice with wash buffer (50% ACN/0.1% trifluoroacetic acid). Phosphopeptides 
were eluted twice from TiO2 beads with 500 μl elution buffer (50 mM K2HPO4,  
pH 10), acidified with 20% formic acid, subjected to desalting and vacuum- 
centrifuged to near-dryness.

Desalted peptides were resuspended in 200 mM HEPES (pH 8.5) and peptide 
concentration was determined using the BCA assay. Approximately 50 μg of pep-
tides for each sample were labelled with TMT reagent for 1 h at room temperature. 
After the reaction was quenched with hydroxylamine, all TMT-labelled samples for 
one experiment were combined into one mixture, acidified with 20% formic acid, 
desalted and vacuum-centrifuged to near-dryness. The TMT-labelled sample mix-
ture was solubilized in HPLC buffer A (1% ACN, 10 mM ammonium bicarbonate, 
pH 8.0) for HPLC fractionation using an Agilent 300 Extend C18 column (5-μm 
particles, 4.6-mm internal diameter, 150 mm in length). Different HPLC fractions 
were acidified with 20% formic acid and vacuum centrifuged to near-dryness. 
Each fraction was desalted using a StageTip, dried by vacuum centrifugation and 
re-suspended for LC/MS analysis.
Mass spectrometry data acquisition. Data were collected using the Orbitrap-
Fusion mass spectrometry platform coupled with EASY-nLC 1000 liquid chro-
matography pump (Thermo Fisher Scientific). A pre-column (Acclaim PepMap 
100 C18, Thermo Fisher Scientific) and analytical column (NTCC-360/75-3-125, 
NIKKYO) were used for sample trapping and analytical separation. Peptides were 
separated at a flow rate of 300 nl/min using a gradient of 6–27% ACN (0.1% formic 
acid) over 190 min.

The MultiNotch synchronous precursor selection MS3-based TMT method 
was used on an Orbitrap-Fusion mass spectrometer using Xcalibur (v.3.0; Thermo 
Fisher Scientific) as described with modifications16–19. In brief, first stage of mass 
spectrum data between 400–1500 m/z were acquired from the Orbitrap at 120,000 
resolution in profile data type with 4e5 AGC target, 50-ms maximum injection 
time. Ions were isolated in top speed mode using the quadrupole with a 0.7-m/z 
isolation window. MS2 scans between 400–1200 m/z were acquired from the ion 
trap in centroid data type with CID fragmentation (35% collision energy) in Turbo 
mode, 1e4 AGC target, 50-ms maximum injection time. Top ten MS2 fragment 
ions were selected using synchronous precursor selection mode for TMT reporter 
ions quantitation. MS3 scans were acquired from the Orbitrap at 60,000 resolu-
tion in profile data type with HCD fragmentation (65% collision energy), 1e5 
AGC target, 120-ms maximum injection time. Ions were not accumulated for all 
parallelisable time.
Mass spectrometry data analysis. Raw mass spectrometry files from the 
entire study were searched against a composite target/decoy database using 
SEQUEST29–31 from Proteome Discoverer software (PD, v.2.1, Thermo Fisher 
Scientific). The target mouse protein database was generated from UniProt, com-
bining all Swiss-Prot and TrEMBL entries (17 October 2015). MS2 spectra were 
searched with ± 20 ppm for precursor ion mass tolerance, ± 1 Da for fragment ion 
mass tolerance, fully tryptic restriction, four maximal missed cleavages, dynamic 
mass shift for oxidation of methionine (+15.9949 Da), fixed TMT modifications 
on the N terminus and lysine (+229.1629 Da), and carbamidomethylation of 
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cysteine residues (+57.0215 Da). For phosphoproteomic analysis, additional 
dynamic modifications on serine, threonine and tyrosine (+79.9663 Da) were 
used. The peptide spectrum matches (PSMs) were filtered by Percolator32 (PD 2.1) 
to achieve 1% protein and peptide FDR (according to Q value) for proteome and 
phosphoproteome, respectively. ptmRS33 (PD 2.1) was used for phosphorylation 
site localization, which derived a localization probability score for each putatively 
modified site based on the given MS2 data. Phosphopeptides with phosphorylation 
site probability score ≥ 25 were considered in following analysis.

TMT reporter ion signal-to-noise (S/N) values were quantified from MS3 scans 
using an integration tolerance of 20 ppm (Orbitrap) with the most confident cen-
troid setting (PD 2.1) for matching peptides. For interactome analysis, raw reporter 
ion abundance was used for further analysis. For proteomic and phosphoproteomic 
analysis, the sum of raw reporter ion for each channel was normalized assuming 
equal input loading of all channels. The sum of reporter ions for each protein was 
used in protein quantitation. The normalized quantification data of all quantified 
proteins, peptides or phosphopeptides were used for further analysis.

To evaluate the confidence of protein identification and quantification by PD, 
we used a recently developed proteomics pipeline JUMP34,35 (v.1.12.1) to re-process 
one set of proteome data (EX4, SlpWTpa2) with the above same database search 
and PSM filtering parameters. The consistency of protein quantification between 
these two pipelines was indicated by Pearson correlation, which was calculated for 
each PSM from proteins quantified by both pipelines.
Proteomic data processing. For proteomic analysis, different isoforms were 
considered as different proteins for data analysis unless otherwise stated. For  
phosphoproteomic analysis, phosphopeptide was used for further analysis includ-
ing unique and composite (containing ≥ 2 phosphorylation sites) forms. The  
normalized quantification data of all quantified proteins, peptides or phosphopep-
tides were consolidated (sum of value) to generate a unique subject ID. The consol-
idated abundance values were then scaled for each protein or phosphopeptide so 
that the average abundance was one. The scaled data from different TMT-multiplex 
experiments for the same comparison (for example, Sleepy/wild-type group) were 
integrated together based on unique subject ID. The multiple unpaired t-test  
(P value) analysis followed by the two-stage step-up FDR (Q value) approach 
was used to determine statistical significance (Q < 0.2) for each comparison36. 
The mean value for each experiment condition was used to generate the log2(fold 
change) value for each unique subject, which was used for further analysis. To 
evaluate phosphorylation stoichiometry37, phosphoproteome normalization was 
performed for SD6/RS3, SD6/S6 and Sleepy/wild-type groups for which whole 
proteome and phosphoproteome data were available. In brief, the scaled phos-
phopeptide abundances of SD6 and Slp groups were adjusted with the mean abun-
dance fold-change value of corresponding protein. Pearson correlation of log2(fold 
change) value between normalized and un-normalized was performed to evaluate 
the normalization effect. The full description and datasets for all proteomic exper-
iments are listed in Supplementary Table 1, and those for all phosphoproteomics 
experiments are listed in Supplementary Table 2.

For SIK3 and SLEEPY interactome analysis, raw abundance data of all quanti-
fied proteins were consolidated (sum of value) to generate unique subject IDs, and 
then normalized assuming equal SIK3/SLEEPY protein amount in all channels. 
Two criteria were used to define the interacting protein (ip) for SIK3 or SLEEPY:  
a) TMT intensity [Mean−Blank >10]; b) fold change [Mean/Blank >2]. For 
the SIK3 preferential interacting protein (SIK3-pip): (Mean SLEEPY−Blank)/
(Mean SIK3−Blank) < 0.5; SLEEPY-pip: (Mean SLEEPY−Blank)/(Mean SIK3−
Blank) > 2. SLEEPY-pip proteins were used for the Gene Ontology (GO) cellular  
component enrichment analysis through Gene Ontology Consortium and 
PANTHER classification system38–40. All 22,262 genes of Mus musculus in the 
database were used as reference to determine the fold enrichment. Fisher’s exact 
with FDR multiple test correction was used to determine statistical significance. 
The full description and datasets are listed in Supplementary Table 6.
Protein phosphorylation-state analysis. The phosphorylation state change (∆Ps) 
value for individual proteins is calculated as the sum of log2(fold change) value of 
all phosphopeptides with statistically significant changes (Q < 0.2) from all protein 
isoforms encoded by the same gene. If none of a phosphopeptide’s Q values is above 
0.2, the ∆Ps value will be zero. The total quantified phosphopetides number of 
the SD6/RS3 group was used for the ∆Ps value normalization with other compar-
isons of brain phosphoproteome in this study. Normalized ∆Ps value was used for 
further analysis to determine the hyperphosphorylated or hypophosphorylated 
proteins. To set up the cutoff for ∆Ps value, two null tests were performed using 
data from SD6/RS3 and Sleepy/wild-type phosphoproteomes, briefly, data from 
channels with even number between two groups were swapped to determine the 
FDR. For two null tests, no phosphopeptide has a Q value above 0.2 and ∆Ps value 
is zero for all proteins (Supplementary Table 2z, aa). Because average standard 
deviation (s.d.) for ∆Ps value of SD6/RS3, SD6/S6 and Sleepy/wild-type groups 
is 1.1 (Supplementary Table 3d), we applied a stringent cut-off for ∆Ps value at 
±2.4 (>2 s.d.) for each comparison group to represent the concept of cumulative 

phosphorylation. Hyperphosphorylated (hyper, ∆Ps >2.4), hypophosphorylated 
(hypo, ∆Ps <−2.4) phosphoproteins. The full description and datasets are listed 
in Supplementary Table 3.

As previously described4, in the normal sleep–wake model, mouse fore-
brains (cortex plus hippocampus) were collected at ZT16 (W4) and ZT4 (S4) to 
purify PSD fractions for phosphoproteomic analysis. For analysis of the normal 
sleep–wake model, the raw phosphopeptide data from supplementary tables 2A 
(hyperphosphorylated during wake (10pm/10am ratio >1.3)) and S2B (hyper-
phosphorylated in the PSD during sleep (10am/10pm ratio >1.3, or 10pm/10am 
ratio <0.77)) in ref. 4 were combined into one data table. The raw quantification 
data of all phosphopeptides were consolidated (sum of value) to generate a unique 
subject ID and log2(fold change) value. It should be noted that no statistical test 
was performed for phosphopeptide comparisons as there were only two technical 
replicates for each condition. The ∆Ps value for each protein is calculated as the 
sum of log2(fold change) value of all phosphopeptides from all protein isoforms 
encoded by the same gene, which was not normalized with SD6/RS3 group. The 
full description and datasets were listed in Supplementary Table 5.
Bioinformatics analysis. The sleep phenotypes, molecular and neuronal func-
tions of 80 SNIPPs were classified manually by literature mining23,24,41–55, the 
complete literature information is listed in Supplementary Table 4a. The classi-
fication of synaptic proteins was mainly based on an integrated synaptic protein 
database from 11 proteomics studies56–66 as listed in Supplementary Table 4b. A 
protein that is shown in ≥ 2 references (Synaptic Ref Count ≥ 2) is considered as 
an annotated synaptic protein. To predict potential AMPK substrates, a sequence  
window of −5 to +4 positions around each phosphorylation site was scored with 
the AMPK motif analyzer27. Putative AMPK phosphorylation sites (score >−0.94, 
the score of the lowest scoring known AMPK substrate) were used for further anal-
ysis. Complete data for AMPK substrate prediction was listed in Supplementary 
Table 4c. Hierarchical clustering (centroid linkage with Euclidean distance) was 
performed with Cluster 3.067.
In vitro kinase assay. The kinase activities of recombinant SIK3 and SLEEPY 
proteins were measured by in vitro kinase assay as previously described68. A 
recombinant GST–MFF(S146) (136-RQNGQLVRNDSIVTPSPPQA-155; AMPK 
motif score = 1.06) fusion protein was used as substrate. Recombinant Flag-SIK3 
and Flag-SLEEPY were overexpressed in HEK 293T cells and affinity purified 
with anti-Flag antibody-conjugated Sepharose beads. A mock preparation from 
HEK293T cells transfected with empty vector was used as negative control. The 
same amount of recombinant kinase and substrate proteins were incubated for 
20 min at 30 °C in kinase reaction buffer (50 mM HEPES, pH 7.4, 1 mM EDTA, 
10 mM MgCl2, 0.5 mM ATP) freshly supplemented with protease/phosphatase 
inhibitors. Reactions were stopped by the addition of sample loading buffer; sam-
ples were resolved by SDS–PAGE followed by western blotting or by Coomassie 
blue staining.
Phospho-tag SDS–PAGE and immunoblotting. Equal amounts of protein sam-
ples were resolved by phospho-tag69 (Wako) or SDS–PAGE and transferred to 
PVDF membrane. Phos-tag SDS–PAGE is an electrophoresis technique capable 
of separating phosphorylated and non-phosphorylated forms based on phospho-
rylation levels, owing to binding to the phospho-tag chemical, which slows the 
migration of phosphorylated protein69. The molecular weight markers are only 
indicative for the non-phosphorylated forms and irrelevant for the phosphorylated 
forms. The Rf value of 1.0 is defined as the position of bromphenol blue dye69.

Western blotting was performed according to standard procedures using the 
corresponding antibodies. Antibodies were used at the optimal concentration 
according to the manufacturer’s instructions. Lamin A/C was measured as a loading  
control for the quantitative analysis of immunoblots of phosphorylation-motif  
antibodies. Antibodies used in this study included anti-EF2 (phospho T56/
T58) (ab82981, Abcam), anti-EF2 (#2332, Cell Signaling), anti-CaMKII (phos-
pho T286) (ab32678, Abcam), anti-CaMKII (#4436, Cell Signaling), anti-nNOS 
(phospho S1417) (ab5583, Abcam), anti-nNOS (ab76067, Abcam), anti-KCC2 
(phospho S940) (612-401-E15, Rockland), anti-KCC2 (07-432, EMD Millipore), 
anti-synapsin-1 (phospho S605) (#88246, Cell Signaling), anti-synapsin-1 (sc-
8295, Santa Cruz), anti-phospho-AMPK Substrate Motif (LXRXX(S*/T*)) 
(#5759, Cell Signaling), anti-phospho-PKC substrate motif ((K/R)XS*X(K/R)) 
(#6967, Cell Signaling), anti-phospho-PKA substrate motif ((K/R)(K/R)X(S*/T*)) 
(#9624, Cell Signaling), anti-phospho-ATM/ATR substrate motif (S*Q) (#9607, 
Cell Signaling), anti-phospho-AKT substrate motif (RXX(S*/T*)) (#9614, Cell 
Signaling), anti-phospho-PDK1 docking motif ((F/K)XX(F/Y)(S*/T*)(F/Y)) 
(#9634, Cell Signaling), anti-phospho-CK2 substrate motif ((S*/T*)DXE) (#8738, 
Cell Signaling), anti-phospho-MAPK/CDK substrate motif (PXS*P, S*PX(K/R)) 
(#2325, Cell Signaling), anti-phospho-CDKs substrate motif ((K/H)S*P) (#9477, 
Cell Signaling), anti-phospho-PLK binding motif (ST*P) (#5243, Cell Signaling), 
anti-phospho-Thr-Pro motif (T*P, T*PP) (#3003, Cell Signaling), anti-phospho-
Thr-Pro-Glu motif (T*PE, T*P) (#3004, Cell Signaling), anti-phospho-Thr-X-
Arg motif (T*X(K/R)) (#2351, Cell Signaling), anti-phospho-Tyr (Y*) (#8954, 
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Cell Signaling), anti-Lamin A/C (sc-6215, Santa Cruz), anti-HA (Y-11) (sc-805,  
Santa Cruz), anti-NMDAR1 (MAB363, EMD Millipore), anti-NMDAR2B  
(75–101, NeuroMab), anti-SynGAP (#5539, Cell Signaling) and anti-SIK3 C-term, a  
custom-generated rabbit polyclonal antibody against the C-terminal 171 amino 
acids of mouse SIK3.
Statistical methods. Unless otherwise noted, all experimental subjects are biolog-
ical replicates and at least two independent experiments were performed. ImageJ 
software was used to quantify intensity of protein bands. GraphPad Prism 7 or R 
software was used for statistical tests. No statistical methods were used to predeter-
mine sample size. Randomization and blinding were not used. Following one-way 
or two-way analysis of variance (ANOVA), Fisher’s LSD test compares one mean 
with another mean; Tukey’s test compares every mean with every other mean; 
Dunnett’s test compares every mean to a control mean; Sidak’s test compares a set 
of means. Repeated measures or paired test was performed for matched subject 
comparisons. P < 0.05 was considered statistically significant. The complete sample 
size, statistical test method and results for each comparison are reported in the 
figure legends and described in detail in Supplementary Table 7a.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Data availability. The mass spectrometry datasets, including raw data files, search 
engine files, full experimental summary file and Supplementary Tables 1 and 2, 
have been deposited to MassIVE70,71 with accession code MSV000081865 and to 
Proteome Xchange with accession code PXD008558. Source Data are provided 
with the online version of the paper. All other datasets generated and/or analysed 
in the current study are available from the corresponding author on reasonable 
request.
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Extended Data Fig. 1 | Sleep phenotype analysis of the sleep-deprived 
and Sleepy models. a–e, Analysis of circadian (a) and mean (b) absolute 
NREMS delta power, absolute EEG power spectra (c), relative EEG power 
spectra (d) and duration (e) of NREMS, REMS and wake states of  
wild-type mice (n = 24) without (WT-basal) and with 6 h of sleep 
deprivation (WT-SD). f–i, Analysis of circadian (f) and mean (g) relative 

NREMS delta power, relative EEG power spectra (h) and duration (i) of 
NREMS, REMS and wake states of Sik3+/+ (WT, n = 24) and Sik3Slp/+  
(Slp, n = 24) mice. Mean ± s.e.m., two-way ANOVA with Sidak’s test  
(a, c–f, h, i); Paired t-test, two-tailed (b); Mean, unpaired t-test, two-tailed 
(g). *(black), P < 0.05; *(cyan), P < 0.01; *(red), P < 0.001.
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Extended Data Fig. 2 | Analysis of global signalling changes in two 
models of increased sleep need. a–m, Representative immunoblots 
using antibodies specific for 13 phosphorylation motifs to assess 
global signalling changes in whole brain lysates of two models. Blots 

represent three (sleep-deprived) or two (Sleepy) independent experiments. 
Quantitative analysis of immunoblots of all 14 phosphorylation-motif 
antibodies is shown in Fig. 1c. n = 12 (S6), 9 (SD6, RS3), 6 (wild-type, 
Sleepy).
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Extended Data Fig. 3 | Analysis of sleep phenotype and signalling 
changes after food-and-water deprivation in the baseline and sleep 
deprivation conditions. a–c, Analysis of circadian (a) and mean (b) 
absolute NREMS delta power, and duration (c) of NREMS, REMS and 
wake states, of wild-type mice (n = 8) without (sham) or with 6 h of food-
and-water deprivation (FD 6 h). d, Quantitative analysis of immunoblots 
with six phosphorylation-motif antibodies using whole brain lysates of 
sham and 6-h food-and-water deprived mice (n = 8) collected at ZT6. 
e–g, Analysis of circadian (e) and mean (f) absolute NREMS delta power, 

and duration (g) of NREMS, REMS and wake states, of wild-type mice 
(n = 11) without (SD + sham) or with 6-h food-and-water deprivation 
during 6-h sleep deprivation (SD + FD 6 h). h, Quantitative analysis of 
immunoblots with six phosphorylation-motif antibodies using whole 
brain lysates of SD + sham and SD + FD mice (n = 6) collected at ZT6. 
Mean ± s.e.m., two-way ANOVA, Sidak’s test (a, c, e, g); Paired t-test, 
two-tailed (b, f); Mean ± s.d., two-way ANOVA, Fisher’s LSD test (d, h). 
*(black), P < 0.05; ns, P > 0.05.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Quality assessment of proteomic and 
phosphoproteomic analysis. a, Representative TMT quantification 
spectrum for the pS551-containing phosphopeptide from the skipped 
Sik3 exon-13 among phosphoproteomic data of the Sleepy model (two 
independent experiments). b–e, Quality assessment of one proteomic 
dataset (EX4, SlpWTpa2) by two search pipelines. Global distribution of 
protein quantification using Proteome Discoverer (PD v.2.1; n = 8,273) (b)  
and JUMP (v.1.12.1; n = 8,473) (c). Boxes correspond to the 25th, 50th  
and 75th percentiles of the data, whiskers extend to 1.5-fold of the  
interquartile range. A similar number of accepted proteins (1% FDR)  
were identified by two pipelines (d). Pearson correlation between the  
two pipelines was calculated for each PSM from quantified proteins by  
both pipelines (e). The vast majority (99.88%) of PSMs (n = 73,454) have  
R2 values larger than 0.9 (red dashed line). f, A Venn diagram showing  
overlaps of quantified proteins between whole brain proteomes of Sleepy 
and sleep-deprived models. g, Volcano plots showing comparative  

analysis of Sleepy/wild-type, SD6/RS3 and SD6/S6 proteomes. Multiple  
unpaired t-test (P value) followed by FDR (Q value) analysis. x axis,  
log2(fold change) in abundance; y axis, −log(Q value) of abundance  
change. The numbers of total (n), increased (in: Q < 0.2, red) and 
decreased (de: Q < 0.2, blue) subjects are shown. Orange dotted lines 
indicate Q = 0.2. h, Pearson correlation between normalized and 
unnormalized phosphopeptides in Sleepy/wild-type, SD6/RS3, SD6/S6  
groups. The numbers of phosphopeptides that can be normalized are 
shown. i, Immunoblots were performed with phosphorylation-site specific 
antibodies to verify hyper-phosphorylation of several proteins in two 
models. Three or two independent experiments for sleep-deprived or 
Sleepy models, respectively. j, Quantitative analysis of immunoblots in i,  
normalized with whole protein abundance, for Sleepy (n = 6) and sleep-
deprived (n = 9) models. Mean ± s.d., two-way ANOVA with Fisher’s LSD 
test. *(black), P < 0.05; *(cyan), P < 0.01; *(red), P < 0.001; ns, P > 0.05.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterreSeArCH

Extended Data Fig. 5 | Liver phosphoproteome analysis of the sleep-
deprived model. a, Quantitative analysis of immunoblots with six 
phosphorylation-motif antibodies using whole liver lysates from the  
sleep-deprived model. n = 8 (S6), 10 (SD6), 7 (RS3). Mean ± s.d.,  
two-way ANOVA with Fisher’s LSD test. *(black), P < 0.05; ns, P > 0.05.  
b, c, Volcano plots showing comparative analysis of liver phosphoproteomes  
in the SD6/RS3 (b) and SD6/S6 (c) groups. Multiple unpaired t-test  
(P value) followed by FDR (Q value) analysis. x axis, log2(fold change) in 

abundance; y axis, −log(Q value) of abundance change. The numbers  
of total (n), increased (in: Q < 0.2, red) and decreased (de: Q < 0.2,  
blue) subjects are shown. Orange dotted lines indicate Q = 0.2.  
d, A Venn diagram showing overlaps of significantly changed (Q < 0.2) 
phosphopeptides among the SD6/RS3 and SD6/S6 groups. e, f, Global ∆Ps 
analysis of all phosphoproteins identified in the SD6/RS3 (e) and SD6/S6 
(f) groups of liver phosphoproteomes. Dotted lines, ∆Ps = ±2.4.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 6 | Examples of cumulative phosphorylation of 
SNIPPs and synaptic phosphoproteomic analysis of normal sleep–wake 
model. a, b, A schematic of the domain structure of synapsin-122 (a) and 
Nav1.223,41,42 (b) that summarizes known phosphorylation sites, kinases 
and physiological functions. Synapsin-1 can be divided into five domains 
(domains A–E). Nav1.2 can be divided into cytoplasmic N-terminal (NT), 
C-terminal (CT), four homologous transmembrane domains (DI–DIV) 
and intracellular loops (DI–II, DII–III, DIII–IV). Amino acid numbers 
refer to the sequence of the mouse proteins. Sites 1–9 of synapsin-1 are 
designated according to the consensus in the literature. Phosphorylation 
sites that are undetected or unchanged in our experiments are labelled in 

grey, whereas those that exhibit significantly increased phosphorylation 
with sleep deprivation are shown in red. Dashed arrows indicate the 
presence of contrasting data for biological functions in the literature. 
c, Published forebrain PSD phosphoproteome results4 were used for 
comparative analysis between normal wake (W4) and sleep (S4) brains. 
d, Global ∆Ps analysis of all identified phosphoproteins in the W4/S4 
group. Dotted lines (∆Ps = ±2.4). e, Quantitative ∆Ps analysis of SD1/
SD0, SD3/SD0 and SD6/SD0 groups. Mean; one-way ANOVA, Tukey’s test 
(total, SNIPPs); unpaired t-test, two-tailed (total versus SNIPPs). *(red), 
P < 0.001.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 7 | Physiological functions of 80 SNIPPs. a, A Venn 
diagram showing overlaps of the set of hyperphosphorylated proteins  
(∆Ps >2.4) between sleep-deprived and Sleepy models. b, A summary  

of 80 SNIPPs and their physiological functions. Stars mark the 13  
SWA-SNIPPs (Fig. 3f). Gene names for annotated synaptic proteins are 
shown in bold.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 8 | Phosphorylation-state changes of SNIPPs 
correspond to changes of sleep need in NMDAR inhibition model.  
a, Representative 8-s EEG and EMG from ZT0–ZT3 for NREMS, REMS 
and wake for vehicle or MK801-treated mice. b, Mean absolute NREMS 
delta power analysis of vehicle or MK801-injected mice (n = 14). Paired 
t-test, two-tailed. c–e, Analysis of absolute EEG power spectra (c), relative 
EEG power spectra (d) and duration (e) for vehicle or MK801-injected 
wild-type mice (n = 14). Mean ± s.e.m., two-way ANOVA with Sidak’s 
test. f, Volcano plot showing comparison between phosphoproteomes of 
MK801 and vehicle treated mice. Orange dotted line, Q = 0.2. Multiple 
unpaired t-test (P value) followed by FDR (Q value) analysis.  

g, Phosphorylation state of synapsin-1 was assessed by SDS–PAGE 
followed by phospho-tag (top) and immunoblotting with anti-synapsin-1 
antibody (bottom). The Rf value of 1.0 is defined as the position of 
bromphenol blue dye (two independent experiments). h, Quantitative ∆Ps 
analysis of MK801/vehicle group. Mean, unpaired t-test, two-tailed.  
i, Percentage of synaptic proteins among the total, hypophosphorylated 
and hyperphosphorylated proteins in the MK801/vehicle group. χ2 test, 
two-sided. j, Venn diagram showing overlaps of hyperphosphorylated 
proteins (∆Ps >2.4) among all three (Sleepy, SD and MK801) models. 
*(black), P < 0.05; *(cyan), P < 0.01; *(red), P < 0.001.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | SLEEPY causes constitutively high sleep need  
by preferentially associating with and phosphorylating SNIPPs.  
a, Experimental design for comparing the interactomes of SIK3 and  
SLEEPY from whole brain lysates. b, Summary of SIK3 and SLEEPY  
interacting proteins (ip) and preferential interacting proteins (pip).  
c, Gene-annotation enrichment analysis of 289 SLEEPY-preferential  
interacting proteins (SLEEPY-pip). GO cellular component enrichment  
analysis using all 22,262 genes of Mus musculus as reference (Ref). Fisher’s 
exact with FDR multiple test correction was used to determine statistical  
significance. Top 10 GO terms of fold enrichment (FDR <0.0001), the  
gene number of SLEEPY-pip and Ref in each term are shown. d, e, Volcano 
plots showing phosphorylation changes of all putative AMPK substrates  
in the Sleepy/wild-type group (d) or from the 28 SLEEPY-pip SNIPPs (e).  
Orange dotted lines, Q = 0.2. f, In vitro kinase assay of recombinant 

SLEEPY and SIK3, and immunoblotting with AMPK phosphorylation 
motif antibody (two independent experiments). g–i, Volcano plot showing 
comparative analysis of whole brain phosphoproteomes (g), all putative 
AMPK substrates (h) or from 28 SLEEPY-pip SNIPPs (i) in the HG/vehicle 
(Slp) group. Orange dotted lines, Q = 0.2. j, Quantitative ∆Ps analysis of 
190 hyperphosphorylated proteins and 52 hypophosphorylated proteins 
in the HG/vehicle (Slp) group. Dotted lines, ∆Ps = ±2.4. k–m, Analysis 
of absolute EEG power spectra (k), relative EEG power spectra (l) and 
duration (m) of NREMS, REMS and wake states of Sik3Slp/+ (Slp, n = 14) 
mice injected with vehicle (Veh) or 8 mg/kg HG at ZT6 and ZT9. Multiple 
unpaired t-test (P value) followed by FDR (Q value) analysis (d, e, g–i). 
Mean, one-way ANOVA with Dunnett’s test (j). Mean ± s.e.m., two-way 
ANOVA with Sidak’s test (k–m). *(black), P < 0.05; *(cyan), P < 0.01; 
*(red), P < 0.001; ns, P > 0.05.
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Extended Data Fig. 10 | Inhibition of SIK3 kinase activity reduces 
phosphorylation of AMPK substrates in sleep-deprived wild-type 
brains. a–c, Volcano plots showing phosphorylation changes of all 
putative AMPK substrates in the SD6/RS3 (a), SD6/S6 (b) and time-course 
sleep-deprivation groups (c). Orange dotted lines, Q = 0.2. d, e, Volcano 
plots showing comparative analysis of whole brain phosphoproteome (d) 
and phosphorylation changes of all putative AMPK substrates (e) in the 

HG/vehicle (WT-SD) group. Orange dotted lines, Q = 0.2. f–h, Analysis 
of absolute EEG power spectra (f), relative EEG power spectra (g) and 
duration (h) of NREMS, REMS and wake states of sleep-deprived (ZT0–
ZT6) wild-type (n = 16) mice injected with vehicle (Veh) or 8 mg/kg HG  
at ZT0 and ZT3. Multiple unpaired t-test (P value) followed by FDR  
(Q value) analysis (a–e). Mean ± s.e.m., two-way ANOVA with Sidak’s test 
(f–h). *(black), P < 0.05; *(cyan), P < 0.01; *(red), P < 0.001; ns, P > 0.05.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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