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oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via
�-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence
of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in
oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive
uptake and �-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore,
alterations in fatty acid �-oxidation both during and after ischemia and in the failing heart can also contribute to
cardiac pathology. This paper reviews the regulation of myocardial fatty acid �-oxidation and how alterations in fatty
acid �-oxidation can contribute to heart disease. The implications of inhibiting fatty acid �-oxidation as a potential
novel therapeutic approach for the treatment of various forms of heart disease are also discussed.

I. INTRODUCTION

The heart has a very high energy demand and must
continually generate ATP at a high rate to sustain con-
tractile function, basal metabolic processes, and ionic
homeostasis. In the normal adult heart, almost all (�95%)
of ATP production is derived from mitochondrial oxida-
tive phosphorylation (Fig. 1), with the remainder being
derived from glycolysis and GTP formation in the tricar-
boxylic acid (TCA) cycle. The heart has a relatively low
ATP content (5 �mol/g wet wt) and high rate of ATP
hydrolysis (�30 �mol �g wet wt�1 �min�1 at rest); thus
under normal conditions, there is complete turnover of
the myocardial ATP pool approximately every 10 s (428,
449–451). To sustain sufficient ATP generation, the heart
acts as an “omnivore” and can use a variety of different
carbon substrates as energy sources if available (358, 426,
538, 605). However, the adult heart normally obtains 50–
70% of its ATP from fatty acid �-oxidation (46, 358, 428,
449, 450, 689).

The �-oxidation of fatty acids is under complex con-
trol and is dependent on a number of factors, including
1) fatty acid supply to the heart; 2) the presence of
competing energy substrates (glucose, lactate, ketones,
amino acids); 3) energy demand of the heart; 4) oxygen
supply to the heart; 5) allosteric control of fatty acid
uptake, esterification, and mitochondrial transport; and
6) the control of mitochondrial function, including direct
control of fatty acid �-oxidation, TCA cycle activity, and
electron transport chain (ETC) activity (136, 142, 312, 313,
358, 426, 538, 605, 609). The transcriptional control of
enzymes involved in fatty acid metabolism and mitochon-
drial biogenesis are also important determinants of fatty
acid �-oxidation rates. These regulatory steps will be
briefly reviewed in this paper, and the reader is referred to
a number of excellent reviews that address this regulation
in more detail (126, 158, 159, 252, 379). These alterations
in fatty acid �-oxidation can have significant energetic
and functional consequences on the heart. In this review
we concentrate on some of the recent advances made in
understanding how these regulatory processes are altered
in various pathological states, and how altering fatty acid
�-oxidation can be used as an approach in the treatment
of heart failure and ischemic heart disease.

II. REGULATION OF FATTY ACID �-OXIDATION

IN THE HEART

A. Overview of the Fatty Acid �-Oxidation

Pathway

The contribution of fatty acid �-oxidation to overall
cardiac oxidative energy metabolism is very dynamic and
can range from almost 100% of the total energy require-
ment of the heart to being a minor contributor (46, 428,
449, 450, 538). An overview of the fatty acid �-oxidative
pathway is shown in Figure 2. Fatty acid use by the heart
is dictated at many levels and is dependent on the source,
concentration, and type of fatty acids delivered to the
heart, as well as the presence of competing energy sub-
strates. The regulation of fatty acid �-oxidation occurs at
almost every step of the metabolic pathway, including at
the level of lipoprotein lipase (LPL), fatty acid uptake into
the cardiac myocyte, esterification to CoA, mitochondrial
uptake, and �-oxidation. The rate of fatty acid �-oxidation
is also very dependent on metabolic demand and the
activities of the TCA cycle and ETC.

B. Source of Fatty Acids

Fatty acids are supplied to the heart as either free
fatty acids (FFA) bound to albumin or as fatty acids
released from triacylglycerol (TAG) contained in chylo-
microns or very-low-density lipoproteins (VLDL) (143,
144, 660). Both sources significantly contribute to overall
fatty acid supply to the cardiac myocyte. Normal circulat-
ing FFA concentrations range between 0.2 and 0.6 mM
(609). However, these levels can dramatically vary from
very low concentrations in the fetal circulation (191) to
over 2 mM during severe stresses such as myocardial
ischemia and uncontrolled diabetes (315, 316, 359). Acti-
vation of the sympathetic nervous system can also rapidly
increase circulating FFA concentrations, primarily result-
ing from �-adrenoceptor-mediated stimulation of hor-
mone-sensitive lipase activity in the adipose tissue (315).
Increased sympathetic nervous system activity during and
after a myocardial ischemic insult (315, 316, 419, 444), or
with chronic heart failure (609), dramatically increases
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circulating FFA concentrations. These chronic or acute
increases in circulating FFAs have a major impact on the
rates of cardiac fatty acid uptake and �-oxidation, as
arterial fatty acid concentration is the primary determi-

nant of the rate of myocardial fatty acid uptake and
oxidation (44, 325, 688). Chronically elevated circulat-
ing FFA levels in obesity and diabetes are also an
important determinant of the high rates of uptake and
�-oxidation observed in these pathophysiological states
(see sect. III).

Chylomicron TAG is also an efficient source of
fatty acids that can compete with FFAs bound to albu-
min (28, 227, 437). Fatty acids contained in VLDL TAG
can also be used for fatty acid �-oxidation. However,
the majority of fatty acids used by the heart that orig-
inate from exogenous TAG are derived from chylomi-
crons, with only a minor portion originating from VLDL
(227, 437). The activity of LPL is responsible for the
majority of FFA derived from chylomicrons, and these
chylomicron-derived FFAs are channeled primarily into
fatty acid �-oxidation (437). In contrast, VLDL/apoli-
poprotein E (apo E) receptors have been demonstrated
to be expressed in the heart (629, 630, 638), and the
uptake of VLDL by this route has been proposed to be
a possible source of myocardial fatty acids (278, 437).
Indeed, a significant proportion of fatty acids derived
from VLDL TAG may be mediated by VLDL/apo E re-
ceptor uptake of the VLDL, such that VLDL-derived
fatty acids are equally distributed between �-oxidation
and deposition into intramyocardial lipids (437). This
has potentially important implications in the develop-
ment of cardiac lipotoxicity (485).

FIG. 2. Fatty acid �-oxidation in the heart. Fatty acid �-oxidation
involves four enzymes (acyl CoA dehydrogenase, enoyl CoA hydratase,
3-OH acyl CoA dehydrogenase, and 3-keotacyl CoA thiolase), which
exist in the heart as different isoforms with varying fatty acid chain
length specificities. One cycle of the �-oxidation spiral results in the
production of acetyl CoA (which then enters the TCA cycle) and a fatty
acyl chain which is two carbons shorter.

FIG. 1. Overview of fatty acid �-oxidation in the heart. Fatty acids
utilized for cardiac fatty acid �-oxidation primarily originate from either
plasma fatty acids bound to albumin or from fatty acids contained within
chylomicron or very-low-density lipoproteins (VLDL) triacylglycerol
(TAG). Fatty acids are taken up by the heart either via diffusion or via
CD36/FATP transporters. Once inside the cytosolic compartment of the
cardiac myocyte, fatty acids (bound to fatty acid binding proteins) are
esterified to fatty acyl CoA by fatty acyl coA synthase (FACS). The fatty
acyl CoA can then be esterified to complex lipids such as TAG, or the
acyl group transferred to carnitine via carnitine palmitoyltransferase
(CPT) 1. The acylcarnitine is then shuttled into the mitochondria, where
it is converted back to fatty acyl CoA by CPT 2. The majority of this fatty
acyl CoA then enters the fatty acid �-oxidation cycle, producing acetyl
CoA, NADH, and FADH2. Under certain conditions, mitochondrial thio-
seterase (MTE) can cleave long-chain acyl CoA to fatty acid anions
(FA�), which may leave the mitochondrial matrix via uncoupling pro-
tein.
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C. Lipoprotein Lipase

Since the majority of circulating FFAs are present as
TAG in lipoproteins, the hydrolysis of this TAG by LPL is
an important determinant of overall fatty acid uptake and
�-oxidation by the heart (332, 490). The primary endoge-
nous tissue lipase, adipose triacylglycerol lipase (ATGL),
also contributes to mitochondrial fatty acid uptake and
oxidation in the heart (206) and will be discussed in
further detail in section IIID. With regard to LPL, func-
tional LPL present on the capillary endothelial cell sur-
face is initially synthesized as an inactive monomeric
proenzyme in the endoplasmic reticulum (ER) of the car-
diac myocyte itself (for review, see Ref. 490). Subse-
quently, the proenzyme is activated between the ER and
the Golgi prior to being secreted as an active homodimer,
following which it binds to cardiac myocyte cell surface
heparin sulfate proteoglycans (HSPG) (490). LPL is sub-
sequently transferred to luminal endothelial cell HSPG
sites, by a mechanism that has yet to be identified. Deg-
radation of LPL occurs either as a result of detachment
from the HSPG binding sites and release into the blood-
stream, or by internalization of the HSPG-LPL complex
into the endothelial cell or cardiac myocyte compartment
(490).

Alterations in the synthesis, activation, secretion, trans-
port, capillary luminal binding, or degradation of LPL can
significantly impact myocardial fatty acid supply, uptake,
and �-oxidation. In general, conditions associated with in-
creased LPL activity are associated with an increase in fatty
acid �-oxidation. For instance, fasting results in an aug-
mented LPL activity, which in part may be mediated by
transport of cardiac LPL to the luminal surface of the endo-
thelium, a process that may be stimulated by AMP-activated
protein kinase (AMPK) (15). In contrast, in adipose tissue,
LPL secretion decreases, which is associated with an angio-
poetin-like protein 4 promotion of active dimerized LPL
conversion to the inactive monomer (619). Although the
data are variable, diabetes and insulin resistance are also
associated with an increase in the amount of cardiac LPL
present on the luminal surface of endothelial cells, an effect
accompanied by a decrease in cardiac myocyte LPL, thereby
suggesting increased secretion of LPL (see Ref. 490 for
review). Overexpression of cardiac LPL in mice is associ-
ated with adaptations in the myocardium similar to diabetes,
including increased fatty acid uptake and the development
of cardiomyopathies (700). In contrast, increases in circulat-
ing fatty acids, which compete with LPL-derived fatty acids
for myocardial uptake, can displace LPL from its HSPG
binding sites (554) and therefore effectively decrease LPL
activity. Since FFA concentrations are often elevated in
diabetes and insulin resistance, the contradictory data re-
garding the regulation of LPL in diabetes and insulin resis-
tance may be partly explained by increased fatty acid in-
duced release of luminal LPL.

D. Myocardial Fatty Acid Uptake

FFAs originating from either albumin or lipoprotein-
TAG enter the cardiac myocyte either by passive diffusion
or via a protein carrier-mediated pathway (see Refs. 192,
566, 615, 660). These protein carriers include fatty acid
translocase (FAT)/CD36, the plasma membrane isoform
of fatty acid binding protein (FABPpm), and fatty acid
transport protein (FATP) 1/6. A proposed mechanism for
this protein-mediated uptake involves binding of the fatty
acids to FABPpm, which concentrates the fatty acids for
either passive diffusion or uptake via FAT/CD36- or FATP
1/6-mediated uptake (566). Of these potential carriers,
FAT/CD36 has received the most attention and plays a
major role in the translocation of fatty acid across the
sarcolemmal membrane of cardiac myocytes (209, 224,
376). Studies involving either FAT/CD36 inhibition (376)
or deletion (311) have shown that 50–60% of fatty acid
uptake and oxidation by the heart occurs via FAT/CD36-
mediated transport. Patients with CD36 deficiency have
low rates of myocardial fatty acid tracer uptake (176, 438,
677), consistent with a key role for CD36 in regulating
cardiac fatty acid metabolism in vivo.

Unlike FATP or FABPpm, FAT/CD36 can translocate
between intracellular endosomes and the sarcolemmal
membrane, which appears to be important in the regula-
tory control of fatty acid uptake (376). Both contraction
and insulin stimulate FAT/CD36 translocation to the sar-
colemmal membrane, thereby facilitating fatty acid up-
take. The mechanism by which this occurs has still not
been delineated, although contraction-induced transloca-
tion has been proposed to occur via activation of AMPK
(376). Polyubiquination of FAT/CD36 has recently been
shown to regulate protein levels in the cell by targeting
the protein for degradation (595). Insulin attenuates
ubiquination, which would theoretically attenuate proteo-
somal degradation, thereby increasing the availability of
CD36 for translocation to the sarcolemmal membrane. In
contrast, fatty acids enhance ubiquination, thereby in-
creasing FAT/CD36 degradation. This latter effect may be
a mechanism for feedback inhibition of fatty acid uptake
during the accumulation of intracellular fatty acid.

Although initial proposals suggested that the bulk of
cardiac myocyte fatty acid transport may be due to pas-
sive diffusion and a flip-flop phenomena due to the li-
pophilic nature of fatty acids, we believe it is important to
stress here that early studies done in cultured cardiac
myocytes (169, 374, 566, 599, 613), and the majority of
isolated heart studies (253, 311, 566), support the concept
of a protein receptor-mediated transport process.

E. Myocardial Triacylglycerol Metabolism

The myocardium has labile stores of TAG that serve
as an endogenous source of FFAs. Myocardial cytosolic
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long-chain acyl CoA can be converted to TAG by glycer-
olphosphate acyltransferase (105, 358, 660), and since
�80% of long-chain fatty acids rapidly appear as CO2 in
coronary venous blood, one can assume that �20% enters
the intramyocardial TAG pool (609, 688). In healthy peo-
ple, the intramyocardial content of TAG is low (�3 mg/g
tissue) (218) relative to the rate of FFA uptake (�3
mg �g�1 �h�1)(118, 429). If 20% of the cardiac FFA uptake
enters the intramyocardial TAG pool (358, 688), the mean
turnover time for intramyocardial TAG is 5 h, which re-
flects the dynamic nature of myocardial TAG metabolism.
Studies in rat hearts illustrate the relative importance of
endogenous TAG breakdown to myocardial energy me-
tabolism: fatty acids derived from endogenous TAG rep-
resented 36% of the energy expenditure in hearts perfused
with glucose as the sole substrate, decreasing to �11%
when palmitate is added to the perfusate (538). Intramyo-
cardial TAG degradation is accelerated by adrenergic
stimulation (309) and synthesis is increased with elevated
plasma FFA concentrations (diabetes, fasting, or starva-
tion) (123, 321, 452). Plasma FFA concentration is a major
regulator of intramyocardial TAG content, as recently
shown using NMR spectroscopy in healthy humans,
where there was a 70% increase in intramyocardial TAG
content with short-term restriction of energy intake, and
260% with starvation, which corresponded with an eleva-
tion in plasma FFA concentrations (218).

Part of the breakdown of intracellular TAG is cata-
lyzed by hormone-sensitive lipase, which is activated by
cAMP. �-Adrenergic stimulation in isolated cardiac myo-
cytes activates glycerolphosphate acyltransferase and in-
corporates palmitate into TAG stores while simulta-
neously increasing TAG breakdown (625), suggesting that
adrenergic stress increases turnover of the intramyocar-
dial TAG pool. A similar acceleration of both lipolysis and
TAG synthesis was observed in the isolated perfused
working rat heart when cardiac power was increased by a
�-adrenergic agonist (195, 197).

F. Cytoplasmic Control of Fatty Acid �-Oxidation

Once in the cytoplasm, fatty acids are converted into
long-chain acyl CoA esters by fatty acyl CoA synthetase
(FACS) (Fig. 1). These long-chain acyl CoAs can then be
used for synthesis of a number of intracellular lipid inter-
mediates, or the fatty acid moiety can be transferred to
carnitine and taken up into the mitochondria. The con-
version of fatty acids into complex lipids such as TAG,
diacylglycerol (DAG), and ceramides has recently re-
ceived considerable interest, as the accumulation of these
intermediates has been implicated in the development of
insulin resistance, cardiac dysfunction, and heart failure
(see Fig. 3 and Refs. 420, 480, 588, 621 for reviews). Of
importance is that fatty acid supply and the rate of long-

chain acyl CoA production can impact the level of these
potentially harmful intracellular intermediates. For exam-
ple, mice with supraphysiological cardiac overexpression

FIG. 3. Peroxisome proliferator activated receptor (PPAR) tran-
scription factor family. In the physiological and pathophysiological set-
ting of fasting/obesity/diabetes, increased circulating free fatty acids
(FFAs) and very-low-density lipoprotein (VLDL)-derived triacylglycerol
(TAG) concentrations increase lipid supply to the cardiac myocyte. This
increases the availability of fatty acid ligands for binding to PPAR
(�/�/�/�) receptors, which form heterodimeric complexes with the ret-
inoid X receptor (RXR). The PPAR-RXR heterodimer complex then
translocates into the nucleus where it binds to its appropriate response
elements. In addition, numerous coactivator proteins, such as PPAR-�
coactivator 1� (PGC1�), play a central role in PPAR-mediated transcrip-
tion, as they enhance the ability of the PPARs to increase transcription
of their target genes. These target genes include a number of genes
involved in regulating fatty acid storage [e.g., PPAR�-diacylglycerol acyl
transferase (DGAT)], fatty acid oxidation [e.g., PPAR�/�/�/�-medium-
chain acyl CoA dehydrogenase (MCAD)], as well as glucose metabolism
[e.g., PPAR�-pyruvate dehydrogenase kinase 4 (PDK4)].
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of either FACS (335) or FATP1 (90) increases cardiac
fatty acid uptake and conversion to long-chain acyl CoA,
which results in the cytoplasmic accumulation of lipid,
myofibrillar disorganization, and development of severe
dilated cardiomyopathy. It is also possible that a decrease
in the rate of long-chain acyl CoA removal by fatty acid
�-oxidation may also contribute to lipotoxicity; however,
this has yet to be established, and there is growing evi-
dence that this is not the case (139, 345, 441). In the
normal heart, �75% of the fatty acids taken up are imme-
diately oxidized (358, 428, 688). As a result, a decrease in
fatty acid �-oxidation could theoretically contribute to
lipid-induced cardiac pathology, and the acceleration of
fatty acid �-oxidation may lessen the potential for lipo-
toxicity. However, the role of fatty acid �-oxidation rates
in contributing to lipid-induced cardiac pathology is con-
troversial (26, 360, 573, 702, 710, 712) and will be dis-
cussed in section IIID.

G. Mitochondrial Fatty Acid Uptake

Carnitine palmitoyltransferase (CPT) 1 is a key en-
zyme in the mitochondria and catalyzes the conversion of
long-chain acyl CoA to long-chain acylcarnitine, which is
subsequently shuttled into the mitochondria. Allosteric
inhibition of CPT 1 by malonyl CoA is a key mechanism by
which CPT 1 activity is regulated (391, 393–397, 473, 543)
(Fig. 1). The turnover of malonyl CoA in the heart is quite
rapid, with a t1/2 of �1.25 min (511). Therefore, myocar-
dial malonyl CoA concentrations are dependent on the
balance between its synthesis from acetyl CoA via acetyl
CoA carboxylase (ACC) (30, 138, 362, 370, 537) and its
degradation via malonyl CoA decarboxylase (MCD) (135,
140, 142, 315, 545, 660). Two cardiac isoforms of ACC
exist, ACC� and ACC�, with ACC� predominating (6, 39,
106, 116, 117, 140, 447). We (178, 362, 370, 537) and others
(11) have provided direct evidence that ACC activity is
inversely related to fatty acid �-oxidation in the heart. A
role of ACC in regulating skeletal muscle fatty acid �-ox-
idation has also now been demonstrated (317, 683, 685).
ACC�-deficient mice (7) have marked increases in muscle
fatty acid �-oxidation rates, confirming the role of ACC�
as a key regulator of fatty acid �-oxidation in muscle.

A key determinant of ACC activity in the heart is the
activity of AMPK (141, 222, 223). In rat heart we demon-
strated that AMPK is able to phosphorylate both ACC�
and ACC�, resulting in an almost complete loss of ACC
activity (140, 312, 314). Moreover, heart ACC copurifies
with the �2 isoform of the catalytic subunit of AMPK
(140), suggesting a tight association between AMPK and
ACC in the heart. A close correlation also exists between
increased AMPK activity, decreased ACC activity, and
increased fatty acid �-oxidation in the heart (312, 314,
381) and in skeletal muscle (530, 684).

We have demonstrated that the heart has a high
activity and expression of MCD (135), which consists of a
50-kDa protein that forms a tetramer in the intact cell
(136, 667). The human MCD cDNA has two putative 5�
start sites that code for a 54- and 50-kDa protein and
contains a mitochondrial targeting sequence on the NH2

terminus (101, 136, 162, 261, 667). Both isoforms of MCD
are expressed in the heart, with the 50-kDa isoform being
localized to the mitochondria (550). Although originally
reported to be solely a mitochondrial enzyme in mamma-
lian cells (112, 302), MCD is also found in the cytoplasm
and peroxisomes (11, 290, 550). Interestingly, it has re-
cently been suggested that as much as 50% of the malonyl
CoA in the heart is derived from peroxisomal acetyl CoA
production (512). In support of this observation, our re-
cent work suggests that cardiac MCD is localized to per-
oxisomes, suggesting that both peroxisomal MCD and
malonyl CoA have, as of yet, unidentified roles in control-
ling the rate of myocardial mitochondrial fatty acid �-ox-
idation (unpublished data). A number of studies have now
shown that conditions associated with increased fatty
acid �-oxidation are also associated with increased MCD
activity, including fasting, diabetes, ischemia, and new-
born heart development (30, 135, 196, 314). In skeletal
muscle, liver, and pancreatic islet cells, increased MCD
activity is also associated with increased fatty acid �-ox-
idation rates (21, 468, 530, 544).

AMPK acts as a “fuel sensor” that increases fatty acid
�-oxidation during times of increased energy demand, or
decreases fatty acid �-oxidation in times of low demand,
secondary to respective decreases and increases in ACC
activity and malonyl CoA levels. In skeletal muscle, it has
also been suggested that MCD is a direct target of AMPK
(544), whereby AMPK-induced phosphorylation of MCD
increases MCD activity and subsequently lowers malonyl
CoA levels; however, our laboratory and others have been
unable to reproduce these findings (205, 550). AMPK is a
serine/threonine kinase that responds to metabolic stresses
that deplete cellular ATP, increase AMP, or increase the
creatine/phosphocreatine (Cr/PCr) ratio (141, 220, 221,
223) and is very active in the heart with an important role
in regulating both fatty acid �-oxidation (178, 312, 313,
370, 380, 381, 545), as well as glucose uptake and glycol-
ysis (35, 160, 262–264, 340, 534, 622, 690, 698, 701). AMPK
is a heterotrimeric protein, consisting of an � catalytic
subunit and � and � regulatory subunits. A number of
different isoforms of each of these subunits exist, with a
variable tissue distribution (116, 141, 179, 215, 221, 695,
696). Heart expresses both �1 and �2 catalytic subunits,
with the �2 subunit predominating, as well as both the �1
and �2 subunits, and �1 and �2 subunits. The � and �
subunits regulate the catalytic activity of the � subunit,
with the � subunit being important in conferring the AMP
sensitivity of the AMPK complex (141). While AMPK ac-
tivation usually requires changes in the ratio of AMP/ATP
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or Cr/PCr, it is now clear that cardiac AMPK activity can
also be altered without changes in nucleotide levels (14,
312). For instance, insulin inhibits myocardial AMPK un-
der conditions where AMP/ATP and Cr/PCr ratios do not
change (35, 163, 178, 380). In addition, our lab (14) and
others (34) have shown that during ischemia, the activa-
tion of the upstream AMPK kinase (AMPKK) also contrib-
utes significantly to the activation of AMPK. However, to
date, the AMPKK responsible for AMPK activation during
ischemia remains to be identified, as the identified AMP-
KKs, LKB1, and Ca2�/calmodulin-dependent protein ki-
nase kinase � (CaMKK�), are either not activated by
ischemia (14) or expressed at very low levels in the heart
(141), respectively. The most recent work in our lab has
preliminarily identified the myosin light chain kinase to
potentially be an AMPKK responsible for the activation of
AMPK during ischemia (unpublished data).

H. Mitochondrial Fatty Acid Translocation

Following the formation of long-chain acylcarnitine
by CPT 1, the acylcarnitine is translocated across the
inner mitochondrial membrane by a carnitine:acylcarni-
tine translocase (CT) that involves the exchange of car-
nitine for acylcarnitine (Fig. 1). CT is a small protein (32.5
kDa) that has a broad specificity in transporting carnitine
esters across the mitochondrial membrane, including ace-
tylcarnitine export from the mitochondria (354, 564). In
addition to transporting acylcarnitines into the mitochon-
drial matrix, CT also provides free carnitine for subse-
quent CPT 1 reactions. CT is a critical step in the trans-
location of fatty acid moieties into the mitochondria, as
evidenced by the development of cardiomyopathies and
irregular heart beats in individuals with CT deficiencies
(354).

Once in the matrix, acylcarnitine is converted back to
long-chain acyl CoA by CPT 2, a 70-kDa enzyme located
on the matrix side of the inner mitochondrial membrane
(564). The long-chain acyl CoA produced by CPT 2 then
enters the fatty acid �-oxidation pathway. Unlike CPT 1,
CPT 2 is less sensitive to inhibition by malonyl CoA (393,
679, 680).

CD36 also resides in mitochondrial membranes in the
heart, and it has been suggested to be essential for mito-
chondrial long-chain fatty acyl uptake and oxidation
based on data using the putative CD36 inhibitor sulfo-N-
succinimidyl oleate, which decreases fatty acid �-oxida-
tion in skeletal muscle mitochondria (65). On the other
hand, isolated cardiac and skeletal muscle mitochondria
from CD36 knock-out mice have normal fatty acid �-oxi-
dation and show a decrease in fatty acid �-oxidation with
sulfo-N-succinimidyl oleate treatment that is similar to
wild-type mice (295), suggesting that CD36 does not serve
an essential role in mitochondrial fatty acid metabolism.

I. Fatty Acid �-Oxidation

The metabolism of long-chain acyl CoA in the mito-
chondrial matrix occurs via the �-oxidation pathway, in-
volving the sequential metabolism of acyl CoAs by acyl
CoA dehydrogenase, enoyl CoA hydratase, L-3-hydroxya-
cyl CoA dehydrogenase, and 3-ketoacyl CoA thiolase (3-
KAT)(Fig. 2) (564). Each cycle of fatty acid �-oxidation
results in the shortening of the fatty acyl moiety by two
carbons, as well as the production of acetyl CoA, flavin
adenine dinucleotide (FADH2), and nicotinamide adenine
dinucleotide (NADH). The four enzymes of �-oxidation
exist in different isoforms that have different chain-length
specificities. Each of these enzymes is sensitive to feed-
back inhibition by the products of the enzymatic reaction,
including FADH2 and NADH. Of particular importance is
the feedback inhibition of 3-KAT by the accumulation of
acetyl CoA. This is important in times of low metabolic
demand, where a decrease in ETC and TCA cycle activity
results in the accumulation of acetyl CoA, FADH2, and
NADH that feeds back and inhibits the enzymes of fatty
acid �-oxidation (428). An increase in acetyl CoA and
NADH production by the pyruvate dehydrogenase (PDH)
complex can also directly inhibit fatty acid �-oxidation.
As a result, flux through fatty acid �-oxidation is highly
dependent on both cardiac energy demand and the source
of carbon substrate (see sect. IIIJ).

The enzymes of fatty acid �-oxidation are also under
a high degree of transcriptional control, and conditions
that upregulate fatty acid �-oxidation are often associated
with increases in the expression of a number of �-oxida-
tion enzymes (360). These transcriptional changes are
mediated to a large degree by the peroxisomal prolifera-
tor activated receptor (PPAR) � and peroxisomal prolif-
erator-activated receptor � coactivator-1 (PGC-1) � (126,
157–159, 252, 379).

The majority of fatty acids undergoing �-oxidation
are not saturated fatty acids, but rather mono- or polyun-
saturated fatty acids. For instance, the most abundant
fatty acid in the blood is oleate, a monounsaturated fatty
acid (453). The �-oxidation of these fatty acids is facili-
tated by auxillary enzymes, which include 2,4-dienoyl
CoA reductase and enoyl CoA isomerase (564). These
enzymes facilitate the formation of a trans double bond
from a cis double bound, which is necessary for the
�-oxidation of fatty acids by the main enzymes involved in
fatty acid �-oxidation (Fig. 2). Little is known as to
whether these enzymes are important in determining the
fate of saturated versus unsaturated fatty acids (i.e., oxi-
dation or esterification into complex lipids). At equiva-
lent, noncompeting concentrations, in isolated working
rat hearts, the oxidation of unsaturated fatty acids such as
oleate (Table 1) or arachidonic acid (540) occurs at sim-
ilar rates to that of the saturated fatty acid palmitate.
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Similar fractional �-oxidation rates are observed for
palmitate and oleate in the human heart (688).

J. Transcriptional Control of Fatty Acid

�-Oxidation

The enzymes involved in the oxidation of fatty acids
are also under a high degree of transcriptional control,
and conditions that upregulate fatty acid �-oxidation are
often associated with increases in the expression of a
number of these enzymes (126, 158, 252, 360, 703). Simi-
larly, conditions in which fatty acid �-oxidation is low,
such as in the fetal heart or during cardiac hypertrophy,
are associated with a decreased expression of these en-
zymes. The transcriptional control of the enzymes of fatty
acid �-oxidation is regulated in large part by nuclear
receptor transcription factors that include the PPARs and
PGC-1�/� (see Refs. 126, 158, 252, 379, 703 for excellent
reviews on this subject). The PPARs are members of a
ligand-activated nuclear receptor superfamily that form a
heterodimer with the retinoid X receptor and bind to the
PPAR response element (PPRE) found on the promoter
region of target genes and increase their expression (Fig.
3). The ligands for the PPARs include fatty acid and/or
lipid metabolites such as the eicosanoids and leukotri-
enes (252).

PPAR� is a major transcriptional regulator of fatty
acid metabolism and is abundantly expressed in heart
muscle. PPAR� has been well studied, and its target genes
include those encoding proteins involved in fatty acid
uptake (FAT/CD36, FATP1), cytosolic fatty acid binding
and esterification (FABP, FACS, glycerol-3-phosphate
acyltransferase, diacylglycerol acyltransferase), malonyl
CoA metabolism (MCD), mitochondrial fatty acid uptake
(CPT 1), fatty acid �-oxidation [very-long-chain acyl CoA
dehydrogenase, long-chain acyl CoA dehydrogenase, me-
dium-chain acyl CoA dehydrogenase (MCAD), 3-KAT],
mitochondrial uncoupling [including mitochondrial thies-
terases (MTE-1) and uncoupling proteins (UCP2, UCP3)],
and glucose oxidation [PDH kinase (PDK) 4] (see Fig. 3
and Refs. 252, 703 for reviews). The importance of PPAR�

as a transcriptional regulator of cardiac fatty acid �-oxi-
dation can be seen from “loss-of-function” and “gain-of-
function” studies. Overexpression of PPAR� in the heart
results in a marked increase in cardiac fatty acid uptake,
fatty acid �-oxidation, and lipid overload due to an in-
creased expression of the enzymes involved in these pro-
cesses (160). The increase in fatty acid uptake and oxida-
tion is exacerbated with the use of PPAR� ligands in these
mice (160). In contrast, deletion of PPAR� (PPAR� �/�)
results in decreased expression of fatty acid �-oxidation
genes (676), which is accompanied by a decrease in fatty
acid �-oxidation and a parallel increase in glucose oxida-
tion (64). Such effects are associated with a significant
improvement in the recovery of cardiac function during
reperfusion following ischemia (548).

PPAR�/� is a ubiquitously expressed nuclear recep-
tor, which is present in high levels in the heart. PPAR�/�
has recently emerged as an important regulator of fatty
acid �-oxidation and is involved in the transcriptional
control of many of the same enzymes as PPAR� (Fig. 3).
However, recent “loss-of-function” and “gain-of-function”
studies on PPAR�/� demonstrated a very different effect on
phenotype compared with the PPAR� model. In the cardiac
specific PPAR�/�-deficient mouse (PPAR�/��/�), Cheng et
al. (84) demonstrated a decrease in fatty acid oxidative
enzymes, but this was associated with the development of
a severe cardiomyopathy and an increase in myocyte lipid
accumulation. In contrast, cardiac overexpression of
PPAR�/� in mice resulted in an increased expression of
genes involved fatty acid �-oxidation and no evidence
of lipid accumulation or cardiac dysfunction (61). Surpris-
ingly, these mice also showed an increased cardiac glu-
cose uptake and oxidation, a phenotype opposite of
PPAR� overexpression. The reasons for these phenotypic
differences are not clear, except that unlike PPAR� over-
expression, PPAR�/� overexpression did not increase the
expression of genes involved in fatty acid uptake or es-
terification.

PPAR� is a third PPAR isoform that, until recently,
was not thought to have direct effects on the heart, due to
very low expression levels in the heart. PPAR� is highly
expressed in adipose tissue, and PPAR� activation can
dramatically decrease circulating fatty acid levels (379,
703). PPAR� agonists, such as the thiazolidinediones, are
widely used as insulin-sensitizing agents, which may in
part be due to lowering circulating fatty acid levels. How-
ever, direct PPAR� overexpression in the heart has re-
cently been shown to produce a phenotype similar to
PPAR� overexpression (i.e., increased expression of fatty
acid �-oxidation genes, but an increased expression of
glucose transporters) (598). Further studies are needed to
clarify what role PPAR� has in directly regulating cardiac
fatty acid �-oxidation and the relationship between fatty
acid �-oxidation and myocardial glucose use.

TABLE 1. Glucose oxidation in the presence of either

palmitate or oleate in the isolated working

mouse heart

Palmitate Oxidation,
nmol/g dry wt

Oleate Oxidation,
nmol/g dry wt

Glucose Oxidation, nmol/g dry wt

With palmitate With oleate

214 � 25 247 � 31 1,665 � 257 1,887 � 201

Isolated mouse hearts were perfused aerobically in the working
mode for 30 min with either 5.0 mM glucose, 0.8 mM palmitate bound to
3% BSA, 100 �U/ml insulin, and 2.5 mM Ca2�, or 5.0 mM glucose, 0.8 mM
oleate bound to 3% BSA, 100 �U/ml insulin, and 2.5 mM Ca2�.
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PGC-1� and PGC-1� are two transcriptional coactiva-
tors important in mitochondrial biogenesis and are highly
expressed in cardiac tissue (488). The PGC-1 isoforms inter-
act with transcription factors bound to specific DNA ele-
ments in the promoter regions of genes (158). PGC-1 coac-
tivates many members of the nuclear receptor superfamily,
including the PPARs, the estrogen-related receptors, and the
nuclear respiratory factor-1. Upregulation of PGC-1 by phys-
iological (exercise) or pathophysiological (fasting, diabetes)
stimuli results in dramatic phenotypic changes such as in-
creased mitochondrial biogenesis, fatty acid �-oxidation,
and oxidative phosphorylation; while decreased PGC-1 ex-
pression (such as in the fetal heart, cardiac hypertrophy, and
heart failure) has the opposite effect of decreasing fatty acid
�-oxidation and mitochondrial biogenesis (see Ref. 158 for
review). The role of altered PGC-1 in diabetes, obesity, and
heart failure will be discussed in subsequent sections.

K. Fatty Acids and Cardiac Efficiency

Cardiac mechanical efficiency is defined as the ratio
of external cardiac power to cardiac energy expenditure
by the left ventricle (44, 45). As the heart meets the
majority (�95%) of its energetic requirements under non-
ischemic conditions via the oxidative metabolism of fatty
acids and carbohydrates, one can estimate myocardial
energy expenditure from the myocardial oxygen con-
sumption (MV̇O2). The external power of the left ventricle
is higher for a given MV̇O2 when the myocardium has low
rates of fatty acid �-oxidation relative to glucose and
lactate oxidation (62, 254, 298, 306, 322, 407, 409, 592,
609). The initial evidence for this phenomenon comes
from studies that found that increasing the rate of fatty
acid uptake of the heart by elevating plasma FFA concen-
trations with an infusion of heparin and TAG emulsion
resulted in �25% increase in MV̇O2 without changing the
mechanical power of the left ventricle (407, 409). Mechan-
ical efficiency was also decreased with an acute elevation
in plasma FFA concentrations in healthy humans (592)
and pigs (306), and during moderate ischemia in dogs
(298, 410). Furthermore, the inverse phenomenon is also
observed: inhibition of fatty acid �-oxidation by 4-bromo-
crotonic acid decreased MV̇O2 and improved mechanical
efficiency of the left ventricle in the perfused rat heart
(254). Similar findings were observed with an infusion of
insulin and glucose in pigs under resting conditions (306),
and with inhibition of CPT 1 under conditions of acute
adrenergic stimulation with pressure overload (723). In-
creasing fatty acid �-oxidation at the expense of glucose
oxidation does not alter the slope of the relationship
between left ventricular (LV) work and MV̇O2, but rather
increases the estimated MV̇O2 at zero work (306), suggest-
ing that increased reliance on fatty acid �-oxidation in-
creases ATP hydrolysis for noncontractile purposes. The

underlying mechanisms responsible for this phenomenon
are generally attributed to a lower phosphate/oxygen
(P/O) ratio for fatty acid metabolism, increased uncou-
pling of mitochondrial oxidative phosphorylation, and
greater futile cycling.

1. P/O ratios

The P/O ratio of oxidative phosphorylation reflects
the number of molecules of ATP produced per atom of
oxygen reduced by the mitochondrial ETC (236) and var-
ies according to the energy substrate used for the gener-
ation of mitochondrial reducing equivalents (NADH and
FADH2). Comparing fatty acid (e.g., palmitate) and glu-
cose, the complete oxidation of 1 palmitate molecule
generates 105 molecules of ATP and consumes 46 atoms
of oxygen, whereas the complete oxidation of 1 molecule
of glucose generates 31 molecules of ATP and consumes
12 atoms of oxygen. Therefore, although the use of fatty
acids as a substrate clearly generates the greater amount
of ATP, it comes at the expense of a greater oxygen
requirement than the use of glucose. The fact that fatty
acids are in a relatively reduced state compared with
glucose accounts for the greater oxygen requirement. As
such, the relative P/O ratio of palmitate is less than that of
glucose, rendering it a less “oxygen-efficient” energy sub-
strate for ATP synthesis. Furthermore, fatty acid �-oxida-
tion is less efficient with regards to ATP synthesis as,
prior to the generation of acetyl CoA for the TCA cycle, it
generates FADH2 as a reducing equivalent, in addition to
generating NADH, whereas glucose metabolism (glycoly-
sis and glucose oxidation, i.e., pyruvate oxidation) only
generates NADH. The oxidation of NADH at complex I of
the mitochondrial ETC is indirectly coupled to the pro-
duction of ATP, while the oxidation of FADH2 bypasses
complex I and thus pumps fewer protons across the inner
mitochondrial membrane, which contributes to fatty ac-
ids being less efficient for the generation of ATP than
glucose. Therefore, at any given level of LV work, an in-
creased reliance on fatty acids relative to glucose as a met-
abolic fuel (for example, in the setting of obesity, insulin
resistance, diabetes, or reperfusion following ischemia) de-
creases cardiac efficiency. Interestingly, cardiac efficiency
calculated on the basis of solely P/O ratios with the use of
exclusively glucose or fatty acids (e.g., palmitate) as an
energy substrate only differs by a theoretical value ranging
from 10 to 12%. However, as noted above, the reported
differences in cardiac efficiency are up to 25%; thus addi-
tional mechanisms must contribute to fatty acid-induced
suppression of cardiac efficiency.

2. Mitochondrial uncoupling

Mitochondrial ATP synthesis via oxidative phosphor-
ylation is critically dependent on the maintenance of an
electrochemical proton gradient across the inner mito-
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chondrial membrane, generated by the extrusion of pro-
tons from the matrix to the intermembrane space by
complexes I, III, and IV (236, 273). The reentry of protons
into the mitochondrial matrix via the F0/F1-ATPase drives
the generation of ATP (Fig. 4) (273).

Uncoupling proteins (UCP1–UCP5) are a family of
mitochondrial transport proteins that provide an alternate
means for the reentry of protons from the inter-membrane
space to the mitochondrial matrix that is not coupled to
the synthesis of ATP. These inner mitochondrial mem-
brane-bound proteins have been shown to uncouple ATP
synthesis from oxidative metabolism, subsequently dissi-
pating energy as heat (Fig. 4) (529). Three related ho-
mologs have been cloned (UCP1, -2, and -3). UCP1 is
highly expressed in brown adipose tissue, where it is
involved in nonshivering thermogenesis but is not ex-
pressed in heart. UCP2 is a ubiquitously expressed iso-
form that minimizes generation of mitochondrial-derived
reactive oxygen species (ROS) (74, 75, 133, 430, 466, 529,
636). UCP3, on the other hand, exhibits a more limited
tissue distribution, being highly expressed in tissues with
a high capacity for fatty acid �-oxidation, such as brown
adipose tissue, skeletal muscle, and the heart (230, 529,
562). Initially it was thought that UCP3 acts as proton
transporter; however, more recent data suggest that it is a
fatty acid anion transporter (183–185, 268–270). UCP3
can translocate the fatty acid anion out of the mitochon-
drial matrix; once in the intermembrane space, the fatty
acid anion can associate with a proton (183–186, 259,
268–270). The resulting neutral fatty acid species is able
to “flip-flop” back into the mitochondrial matrix, where it
relinquishes the proton. The net effect is a leak of protons,
as with classic uncoupling, but with no net flux of fatty
acids. While this clearly occurs, it may not play a major
role, as many studies show no effect of UCP3 content on
the P/O ratio in isolated mitochondria (99, 102, 291, 563,
663).

With increased fatty acid �-oxidation, the delivery of
reducing equivalents (NADH and FADH2) to the ETC and
the generation of ROS such as the superoxide anion
(O2

•�) is increased (53) from either complex 1 or 3 of the
ETC (8, 53, 181, 349). Indeed, increased cardiac fatty acid
utilization in hearts from leptin-deficient (ob/ob) and lep-
tin receptor-deficient (db/db) mice is associated with in-
creased MV̇O2, ROS generation, and uncoupled respira-
tion, as well as decreased rates of ATP synthesis and
lower cardiac efficiency (243, 244). However, the expres-
sion levels of UCP3 are not increased. Unfortunately, it
should also be noted that there is not a large amount of
available data to support the concept of fatty acid oxida-
tion increasing ROS generation and uncoupled respira-
tion. Interestingly, O2

•� can activate uncoupling proteins
directly (145, 146) and indirectly via formation of lipid
peroxidation products (421). This activation may feed-
back and uncouple oxidative phosphorylation, and thus

FIG. 4. Increased reliance of the myocardium on fatty acids decreases
cardiac efficiency. The increased delivery of acetyl CoA to the tricarboxylic
acid (TCA) cycle, and the subsequent delivery of reducing equivalents (FADH2

and NADH) to the electron transport chain arising from increased fatty acid
�-oxidation can reduce cardiac efficiency via the activation of uncoupling
proteins (UCPs) that dissipate the mitochondrial proton (H�) gradient and thus
uncouple it from ATP synthesis (1). UCPs also contribute to the export of fatty
acid (FA) anions generated in the mitochondrial matrix (2) due to the hydro-
lysis of matrix fatty acyl CoA(s) by mitochondrial thioesterases (MTEs) (3). FA
anions are also generated in the cytosol due to the hydrolysis of cytosolic fatty
acyl CoA(s) by cytosolic thioesterases (CTEs) (4). As mitochondria cannot
regenerate fatty acyl CoA(s), FA anions require reesterification to CoA in an
ATP-dependent manner via fatty acyl CoA synthase (FACS) prior to regaining
entry into the mitochondria for �-oxidation. This futile cycling consumes ATP
for noncontractile purposes. The cycling of fatty acids into and out of intramyo-
cardial triacylglycerol (TAG) represents an additional route of futile cycling,
where fatty acyl CoA molecules are the substrate for TAG synthesis, while the
hydrolysis of TAG liberates fatty acids (5) that must be reesterified to CoA in
an ATP-dependent manner by FACS prior to subsequent metabolism. In-
creased fatty acid �-oxidation also decreases cardiac efficiency by decreasing
the activity of the pyruvate dehydrogenase complex (6) and hence the contri-
bution of glucose oxidation to oxidative metabolism. This uncouples the pro-
cesses of glycolysis and glucose oxidation and can increase the generation of
cytosolic H� from the hydrolysis of glycolytically derived ATP. These H� can
accumulate during ischemia and result in intracellular Na� overload (7), and
trigger reverse mode Na�/Ca2� exchange during reperfusion (8). The reestab-
lishment of ionic homeostasis consumes ATP and therefore decreases the
amount of ATP available to fuel contractile function, ultimately decreasing
cardiac efficiency.
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further dissipate the generation of O2
•� and protect the

cell from excessive ROS generation; however, such an
effect would increase MV̇O2 and thus decrease cardiac
efficiency.

It has been postulated that an additional role for
UCP3 is to export fatty acid anions from the mitochon-
drial matrix when fatty acyl CoA levels are increased.
When the supply of fatty acyl CoA exceeds the rate of
fatty acid �-oxidation (250), MTE 1 can hydrolyze excess
fatty acyl CoA, yielding free CoA and a fatty acid anion.
Although not overtly apparent, this reaction may function
to replenish intramitochondrial CoA for other CoA-depen-
dent reactions, including reactions of the TCA cycle (�-
ketoglutarate dehydrogenase), pyruvate oxidation (PDH),
and fatty acid �-oxidation (3-KAT). As mitochondria do
not have the capacity to regenerate fatty acyl CoA, the
fatty acid anion is exported to the cytosolic compartment.
It has been proposed that this export is mediated by
UCP3, thus ridding the matrix of a potentially deleterious
molecular species. Activation of PPAR� either pharmaco-
logically or by diabetes causes a 3- to 10-fold increase in
the activity and protein expression of MTE 1 and the rate
of fatty acid extrusion from cardiac mitochondria in rats;
however, the increase in UCP3 protein expression is more
modest (�50%) (187, 296). This suggests that there is
either sufficient UCP3 in the membrane to support the
large increase in fatty acid export or that other protein(s)
are responsible for this process. It has been postulated
that mitochondrial CD36 could mediate fatty acid anion
export from mitochondria; however, evidence against this
comes from the observation that there is normal fatty acid
anion export in mitochondria isolated from CD36 knock-
out mice (295). In any case, the formation of fatty acids in
the matrix by MTE 1 appears to function to protect
against the depletion of matrix CoA (234); however, this
would be associated with significant ATP wasting (see
below) and hence contribute to the decrease in cardiac
efficiency when fatty acid utilization is enhanced by de-
creasing the efficiency of converting ATP hydrolysis to
contractile work.

3. Futile cycling

Increased fatty acid utilization can also decrease car-
diac efficiency via the futile cycling of fatty acid interme-
diates, such that more ATP is consumed for noncontrac-
tile versus contractile purposes (Fig. 4). Export of fatty
acid anions from the mitochondrial matrix by UCP3 gen-
erates a futile cycle: the exported fatty acid anion is
converted to an acyl CoA ester prior reentry to the mito-
chondrial matrix for further metabolism via fatty acid
�-oxidation. This process requires FACS, which con-
sumes the equivalent of two molecules of ATP as the
reaction releases AMP and pyrophosphate. Cytosolic thio-
esterases also exist and, in addition to other proposed

roles, have the potential to engage in the futile cycling of
fatty acids (250), as the expression of these enzymes is
increased in states of increased fatty acid utilization in-
cluding starvation and diabetes mellitus, both of which
decrease cardiac efficiency.

The cycling of fatty acids between their acyl moieties
and the intracellular TAG pool represents another signif-
icant route of futile cycling. Although this mechanism
may function to limit potentially deleterious increases in
the cytosolic concentration of FFAs, it does at the ex-
pense of consuming ATP for noncontractile purposes
(539). This is attributed to the liberation of FFAs from the
TAG pool, which require reesterification via an ATP-
dependent manner to form their respective acyl CoA moi-
eties for subsequent �-oxidation or reincorporation into
the TAG pool. The cycling of fatty acids and TAG has been
reported to contribute to �30% of total cellular energy
consumption in isolated noncontracting cardiac myocytes
(425). In addition, high concentrations of long-chain fatty
acids can also activate sarcolemmal Ca2� channels, which
would increase the entry of extracellular Ca2� into the
cytosol and increase the rate of ATP hydrolysis required
to maintain normal cytosolic Ca2� homeostasis (248).

Elevated levels of fatty acids may impair contractile
power by inhibiting the transfer of ATP from the mito-
chondrial matrix to the site of ATP hydrolysis in the
cytosol, as suggested by studies demonstrating the inhi-
bition of the adenine nucleotide translocator (ANT) by
long-chain acyl CoAs (96, 323, 583, 585, 692). In vitro
long-chain acyl CoAs inhibit ANT from either side of the
mitochondrial membrane (96, 299, 323, 583–587, 693);
however, inhibition from the matrix side is more pertinent
to disease states like myocardial ischemia (323, 585, 587)
and diabetes, where there is an increase in matrix long-
chain acyl CoAs due to reduced �-oxidation and/or
greater fatty acyl CoA supply to the matrix through the
carnitine transport system.

L. Interaction Between Fatty Acid and Glucose

Metabolism

In the well-perfused heart, �50–70% of the acetyl
CoA comes from �-oxidation of fatty acids and 30–50%
comes from the oxidation of pyruvate (188, 605, 686, 687,
689) that is derived in approximately equal amounts from
glycolysis and lactate oxidation (188, 605, 686, 687, 689).
The pyruvate formed from glycolysis has three main fates:
conversion to lactate, decarboxylation to acetyl CoA, or
carboxylation to oxaloacetate or malate (Fig. 5). Pyruvate
decarboxylation is the key irreversible step in carbohy-
drate oxidation and is catalyzed by PDH (470, 494), a
multienzyme complex located in the mitochondrial ma-
trix. PDH is under both phosphorylation and allosteric
regulation. PDH is inactivated by phosphorylation on the
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E1 subunit of the enzyme complex by a specific PDHK and
is activated by dephosphorylation by a specific PDH phos-
phatase (289, 470, 681) (Fig. 3). PDK is inhibited by pyru-
vate and by decreases in the acetyl CoA/CoA and NADH/
NAD� ratios (289, 470, 681) (Fig. 3). There are four iso-
forms of PDK (PDK1–4); PDK4 is the predominant
isoform in heart, and its expression is rapidly induced by
starvation, diabetes, and PPAR� ligands (56, 225, 470,
697), suggesting that its expression is controlled by the
activity of the PPAR� promoter system. High circulating
FFAs and intracellular accumulation of long-chain fatty
acid moieties, such as that occurring with fasting or dia-
betes, enhance PPAR�-mediated expression of PDK4, re-
sulting in greater phosphorylation-induced inhibition of
PDH and less oxidation of pyruvate derived from glycol-
ysis and lactate (247, 697). The PDH complex also con-
tains a PDH phosphatase that dephosphorylates and ac-
tivates PDH. The activity of PDH phosphatase is in-
creased by Ca2� and Mg2� (390).

The oxidation of pyruvate and the activity of PDH in
the heart are decreased by elevated rates of fatty acid
�-oxidation, such as those occurring when plasma con-
centrations of FFAs are elevated. In addition, pyruvate
oxidation is enhanced by suppression of fatty acid �-ox-
idation, as observed with a decrease in plasma FFA con-
centrations, or by a direct inhibition of fatty acid �-oxi-
dation (101, 232, 233, 310, 358, 565, 605). High rates of
fatty acid �-oxidation also inhibit phosphofructokinase
isoforms 1 and 2 (and thus glycolysis) via an increase in
cytosolic citrate concentration. This “glucose-fatty acid
cycle” was first described by Philip Randle and colleagues
in the 1960s (182, 497, 498) and thus is generally referred
to as the “Randle cycle.” The maximal rate of pyruvate
oxidation at any given time is set by the degree of phos-
phorylation of PDH; however, the actual flux is deter-
mined by the concentrations of substrates and products in
the mitochondrial matrix as these control the rate of flux
through the active dephosphorylated complex (219).

M. Fatty Acid Metabolism During an Acute

Increase in Work Load

During exercise, the healthy heart can increase LV
contractile power and myocardial oxygen consumption
four- to sixfold above resting values, which requires a
proportional increase in the generation of NADH and
FADH2 from substrate oxidation. An acute increase in
cardiac work load generally increases myocardial fatty
acid uptake and �-oxidation. However, the relative in-
crease is greater for carbohydrates (glucose, glycogen,
and lactate) than for fatty acids with exercise in humans
(188, 274, 275, 326, 327), or �-adrenergic stimulation and
elevated afterload in large animals (572, 722, 723) or
perfused rat hearts (106, 195, 197, 572, 722, 723). The

FIG. 5. The Randle (glucose-fatty acid) cycle. The Randle cycle de-
scribes the reciprocal relationship between fatty acid and glucose metab-
olism. The increased generation of acetyl CoA derived from fatty acid
�-oxidation decreases glucose (pyruvate) oxidation via the activation of
pyruvate dehydrogenase kinase (PDK) and the subsequent phosphorylation
and inhibition of pyruvate dehydrogenase (PDH) (1). PDK is also activated
by increased mitochondrial NADH/NAD� ratios in response to increased
fatty acid �-oxidation. The increased supply of fatty acid �-oxidation-
derived acetyl CoA to the TCA cycle can also decrease glycolysis due to the
inhibitory effects of citrate [a TCA cycle intermediate which has gained
access to the cytosol via the tricarboylate carrier (TCC)] on phosphofruc-
tokinase-1 (PFK-1) (2). Citrate can also serve as a source of cytosolic acetyl
CoA (see below). The inhibition of glucose (pyruvate) oxidation is the
predominant inhibitory effect of fatty acid �-oxidation on the pathways of
glucose metabolism. Conversely, the increased generation of acetyl CoA
derived from glucose (pyruvate) oxidation inhibits fatty acid �-oxidation, as
the terminal enzyme of fatty acid �-oxidation, 3-keto-acyl CoA thiolase, is
sensitive to inhibition by acetyl CoA (3). Acetyl CoA derived from glucose
(pyruvate) oxidation due to the activity of carnitine acetyl transferase
(CAT) and subsequent formation of acetyl-carnitine is also a substrate for
carnitine:acetyl-carnitine transferase (CACT). CACT exports acetyl-carni-
tine to the cytosol, where it can be reconverted to acetyl CoA through the
activity of cytosolic CAT. Cytosolic acetyl CoA is a substrate for acetyl CoA
carboxylase (ACC), which can increase the generation of malonyl CoA, an
endogenous inhibitor of CPT I (4), and therefore decrease fatty acid �-ox-
idation when glucose (pyruvate) oxidation is increased.
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response in vivo is highly dependent on the arterial con-
centrations of lactate and FFA, as an increase in arterial
lactate during exercise greatly increases myocardial lac-
tate uptake at the expense of FFA (188). Similarly, with
prolonged moderate intensity exercise (�30 min), there is
increased FFA release from adipose tissue and elevated
plasma FFA levels, which increases myocardial FFA up-
take and �-oxidation (328). Treatment with nicotinic acid
during exercise decreases arterial FFA concentrations,
fatty acid uptake, and �-oxidation and increases glucose
and lactate uptake (328), illustrating the clear role of
arterial FFA levels in regulating substrate oxidation in the
heart.

The increase in myocardial fatty acid uptake and
�-oxidation during high work loads is accompanied by a
decrease in myocardial malonyl CoA content after 15–30
min of stimulation in pigs (213, 294) and in perfused rat
hearts (195, 196, 513), which suggests that removal of
malonyl CoA inhibition of CPT 1 facilitates the increase in
fatty acid �-oxidation. On the other hand, an abrupt in-
crease in LV power in pigs induced by aortic contraction
and �-adrenergic stimulation increases fatty acid �-oxida-
tion 2.5-fold after 5 min despite a similar increase in
myocardial malonyl CoA concentration. There is no in-
crease in the activity of AMPK or MCD, and no change in
ACC activity with an increase in cardiac energy expendi-
ture (213, 294, 513, 723). Thus the increase in fatty acid
�-oxidation with an acute increase in work load does not
appear to be dependent on alternations in the ACC-MCD-
malonyl CoA pathway.

N. Species and Insulin Sensitivity Differences in

Control of Myocardial Fatty Acid Metabolism

Although we have discussed in great detail the con-
trol of myocardial fatty acid metabolism based on a vast
number of comprehensive studies, there are a number of
key differences between animal models utilized that need
to be highlighted and that the reader must take into
consideration when interpreting these data. First, isolated
working rat hearts exposed to equivalent concentrations

of perfusate fatty acid will oxidize these fatty acids at
significantly greater rates than their mouse counterparts
(24, 137, 139, 312). This may appear somewhat unex-
pected, as the mouse has a substantially higher heart rate
and work load, and thus must oxidize more energy to
meet the energy needs required to sustain contractile
function. However, glucose and lactate oxidation rates
are dramatically higher in the mouse versus the rat, which
accounts for the vast differences in work load and oxida-
tive demand (166, 448). Furthermore, fatty acid-induced
inhibition of glucose oxidation is much more potent in the
rat (�10- to 15-fold, Ref. 538) than in the mouse (�3- to
5-fold, Ref. 164).

Interestingly, the mouse heart is also much more
sensitive to insulin, as insulin results in a dramatic in-
crease in glucose oxidation rates that is not inhibited to
the same extent by high fatty acids in the perfusate, which
is seen in the rat (164, 538). Moreover, insulin does not
actually reduce myocardial fatty acid �-oxidation rates in
the rat when the perfusate contains high levels of fat
(538), whereas it causes a dramatic reduction in myocar-
dial fatty acid �-oxidation rates in the mouse (164). This
may be an important issue to consider with regard to the
vast number of studies involving high-fat feeding, obesity,
and diabetes in transgenic mouse models, which are likely
not to be replicated in the rat (due to lack of transgenics
in this species), yet may possibly yield completely differ-
ent results due to species’ differences in fatty acid regu-
lation and insulin sensitivity of fatty acid metabolism.

III. METABOLIC PHENOTYPE IN OBESITY AND

DIABETES: UNDERLYING MECHANISMS

AND FUNCTIONAL CONSEQUENCES

Obesity and diabetes both induce a distinct cardiac
metabolic phenotype (Table 2) that can result in an in-
crease in fatty acid uptake and �-oxidation by the heart.
The underlying mechanisms of this cardiac phenotype are
complex but may include alterations in circulating con-
centrations of FFAs and adipokines, the expression and
cellular localization of fatty acid transporters, use of en-

TABLE 2. Characteristics of the metabolic phenotype in obesity and diabetes

Measured Parameter Obesity Reference Nos. Diabetes Reference Nos.

Circulating FFAs and TGs 1 13, 26, 60, 110, 276, 283, 371, 507, 637, 710 1 26, 501, 710
Fatty acid uptake 1 26, 51, 110, 305, 371, 482, 483, 501, 710 1 29, 51, 67, 481, 482, 551

ND 214, 260, 603
Intramyocardial TG 1 26 1 26, 123, 424, 440, 517, 541
Malonyl CoA concentration 2 355 2 214, 355, 545
MCD expression 1 360 1 545, 709
Fatty acid �-oxidation 1 2, 3, 60, 387, 482 1 2, 38, 67, 69, 207, 229, 244, 246, 292
Fatty acid �-oxidation 2 710 2 710

FFA, free fatty acid; TG, triglyceride; MCD, malonyl CoA decarboxylase; 1, increase; 2, decrease; ND, no difference.
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dogenous stores of fatty acids for �-oxidation, and/or
alterations in the regulation of fatty acid �-oxidation at
both the enzymatic and transcriptional level. Of impor-
tance is that it is becoming clear that these changes in
fatty acid metabolism can have a significant impact on
cardiac function and efficiency in obesity and diabetes.

A. Alterations in Myocardial Fatty Acid Supply,

Uptake, and �-Oxidation in Obesity and

Diabetes

1. Fatty acid supply

Normally when the amount of energy entering the
body exceeds the immediate energy expenditure, the ex-
cess energy is stored in adipocytes in the form of TAG.
Under physiological conditions, the release of FFAs from
adipose is well regulated such that appropriate amounts
of FFAs are released to meet the energy requirements of
tissues including the heart. When the balance between
energy supply and demand is perturbed due to overcon-
sumption of food, adipose tissue stores the excess lipid.
When adipocyte size is greatly increased, there is “spill-
over” of lipids, such that circulating FFAs and TAG are
elevated (47, 113, 203, 283, 307, 475, 501, 507). These
elevated levels of FFAs can also accelerate VLDL TAG
synthesis in the liver, further contributing to hyperlipid-
emia (339). Both human and animal studies have shown
that a prevalent metabolic change in obesity involves an
elevation in circulating FFAs and TAGs (60, 110, 276, 307,
371, 387, 620, 637, 710). In parallel with increasing circu-
lating lipids, intramyocardial TAG content appears to in-
crease progressively with body mass index (626). It has
been proposed that accumulation of fatty acids and TAG
in the myocardium may contribute to the development of
cardiac dysfunction and heart failure (88, 89, 573, 648,
710, 712) (see sect. IIID).

This increase in fatty acid supply to the heart can
increase fatty acid uptake and �-oxidation in obesity and
diabetes; however, additional mechanisms are also
present. For instance, cardiac fatty acid �-oxidation is
elevated in 4-wk-old ob/ob and db/db mice prior to a
significant change in circulating substrates (60). A poten-
tial mechanism to explain the increase is an increase in
LPL activity. However, the evidence for an increase in LPL
activity in the diabetic heart is inconclusive (48, 301, 383,
431, 489, 521), potentially due to differences in the degree
and duration of diabetes and method of LPL quantifica-
tion (490). Nonetheless, it does appear that hearts from
insulin-resistant animals have an enlargement of the cor-
onary LPL pool (493), and acute and chronic moderate
diabetes induced with streptozotocin is associated with
an increased heparin-releasable LPL activity (489, 521),
which could potentially contribute to the elevated rates of
fatty acid �-oxidation.

2. Fatty acid uptake

Increased fatty acid uptake observed in obesity and
diabetes may also be dependent on greater expression
and localization of sarcolemmal fatty acid transporters.
Cardiac fatty acid uptake is elevated in the insulin-resis-
tant, obese Zucker rat, an effect associated with a greater
amount of FAT/CD36 localized in the sarcolemma with no
change in total cellular content (110, 371). Increased
translocation of FAT/CD36 to the sarcolemma has also
been observed in hearts from db/db mice (66). In addition,
total protein and sarcolemmal content of FABPpm is also
elevated. It has been previously demonstrated that an
increase in FAT/CD36 and FABPpm content in the sar-
colemmal membrane markedly increases fatty acid up-
take in cardiac myocytes and giant sarcolemmal vesicle
preparations (76) and that knockout of FAT/CD36 mark-
edly impairs fatty acid �-oxidation in the working mouse
heart (311). As a result, an increased expression and
subcellular distribution of fatty acid transporters could
partially account for the increased fatty acid supply and
oxidation. The mechanism resulting in the relocation of
fatty acid transporters to the sarcolemma is unknown. It
has been proposed that hyperinsulinemia associated with
obesity-induced insulin resistance and diabetes could
contribute, as insulin stimulates the translocation of
CD36/FAT to the sarcolemma in rat cardiac myocytes
(304, 373, 376).

Previous reports suggest that decreased levels of
FAT/CD36 may contribute to insulin resistance in the
spontaneously hypertensive rat (10, 487). However, re-
cent evidence suggests the opposite, that increased ex-
pression of FAT/CD36 contributes to insulin resistance, as
there is a positive correlation between the sarcolemmal
content of FAT/CD36 and cellular TAG in skeletal muscle
from obese and type 2 diabetic patients (50, 551). More-
over, abnormal expression of FAT/CD36 in the liver dur-
ing diet-induced obesity (DIO) causes dyslipidemia, con-
tributing to the cardiac metabolic phenotype in obesity
(305).

3. Endogenous TAG stores

The intramyocardial TAG content is highly labile and
increases rapidly with short-term starvation or food re-
striction in humans (218) and rodents (452), presumably
due to an increase in FFA and ketone bodies. Obesity and
diabetes increase intramyocardial TAG stores (123, 424,
472, 516) due in part to elevated circulating FFAs and
TAG (26, 424, 472, 516), increases in fatty acid uptake
(109), and increased intramyocardial TAG synthesis due
to increased myocardial CoA and long-chain acyl CoA
synthesis (363, 367, 506). Despite the accumulation of
TAG in the diabetic heart, these stores can be rapidly
mobilized in the presence or absence of high concentra-
tions of fatty acids (541). Hearts from diabetic rats also
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display a greater rate of [13C]palmitate enrichment and a
greater rate of turnover of their endogenous TAG pool,
which is associated with a greater oxidation of endoge-
nous unlabeled fatty acids (439). Interestingly, even if
diabetic rat hearts are perfused in the absence of exoge-
nous fatty acids, glucose oxidation still provides �20% of
the total ATP requirement of the heart (541, 669), suggest-
ing that in addition to high circulating concentrations of
FFAs, other mechanisms also contribute to the decrease
in glucose metabolism. These additional mechanisms may
include the interaction of fatty acid and glucose metabo-
lism as defined by the Randle cycle, the potential impli-
cations of lipotoxicity on insulin signaling, as well as
changes in the subcellular control of fatty acid �-oxida-
tion.

4. Mitochondrial fatty acid uptake

Modifications in the malonyl CoA regulation of CPT 1
and the transport of fatty acids into the mitochondria play
an important role in the accelerated rates of fatty acid
�-oxidation found in obesity and diabetes. We have pre-
viously demonstrated that hearts from streptozotocin-
treated rats are almost entirely dependent on fatty acid
�-oxidation as a source of TCA cycle acetyl CoA when
perfused with glucose and palmitate as working hearts
with either diabetic or normal substrate concentrations
(545). This reliance on fatty acid �-oxidation is not asso-
ciated with changes in AMPK or ACC activity; however,
MCD expression and activity are increased in the diabetic
group (545). MCD mRNA levels are elevated in hearts
from streptozotocin-treated rats (709), and malonyl CoA
levels are decreased in hearts from streptozotocin-treated
swine (214, 355). As MCD is the enzyme responsible for
the degradation of malonyl CoA in the heart, this would
suggest that a reduction in malonyl CoA levels and relief
of inhibition of CPT 1 contribute to accelerated rates of
fatty acid �-oxidation in diabetes.

Preliminary evidence also suggests that MCD plays a
role in augmenting fatty acid �-oxidation in obesity, since
mice subjected to DIO have elevated rates of fatty acid
�-oxidation at the expense of glucose oxidation, and this
is associated with an increased expression of MCD (165,
360). In addition, both high-fat feeding and fasting, which
induce elevated FFA concentrations, result in increased
MCD expression, potentially due to the activation of
PPAR� (331, 709). MCD is highly regulated by PPAR�
transcriptional control (114, 293, 331). We showed that
cardiac MCD activity and expression are increased in
diabetes, fasting, high-fat feeding, and newborn hearts
(63, 136, 196, 314, 708). Supporting this concept, PPAR�
null mice have increased rates of glucose oxidation and
decreased expression and activity of MCD (64).

In contrast, the elevation in myocardial fatty acid
�-oxidation observed in db/db mice is associated with a

reduction in AMPK activity and an increase in malonyl
CoA content (66). Furthermore, although fatty acid �-ox-
idation contributes the majority of oxidative ATP produc-
tion in the obese JCR rat (365), AMPK and ACC activity
did not differ from their lean counterparts (26).

5. Fatty acid �-oxidation

Controversy exists as to whether the observed accu-
mulation of intramyocardial lipid metabolites (TAG, long-
chain acyl CoA, DAG, and ceramide) in obesity and type
2 diabetes is primarily due to an excessive fatty acid
supply or to an impaired ability of the myocardium to
oxidize the available fatty acids (151, 360, 573, 710, 712)
(Fig. 6). Recently, a number of experimental studies sug-
gested that decreased rates of fatty acid �-oxidation play
a major role in the accumulation of intramyocardial lipid
metabolites (243, 244, 573, 710, 712). A study in obese
Zucker rats suggests that myocardial fatty acid �-oxida-
tion is impaired following an overnight fast, which is
associated with an increased lipid deposition in the heart
and impaired contractile function (710). However, this
study did not consider the contribution of the dramati-
cally expanded intracellular pool of TAG as a source of
fatty acid to overall fatty acid �-oxidation. In contrast,
results from our laboratory with JCR obese rats demon-
strate that fatty acid �-oxidation rates are not impaired
following an overnight fast and that the doubling of in-
tramyocardial TAGs observed in this model is likely due
to an excessive fatty acid supply (26). Moreover, fatty acid
�-oxidation accounts for the majority of ATP production
in hearts from JCR obese rats (365). Cardiac overexpres-
sion of PPAR�, which produced a phenotype mimicking
that seen in type 2 diabetes, is associated with a dramatic
increase in fatty acid �-oxidation rates and a subsequent
reduction in both glucose uptake and oxidation (160).
Recent studies in our laboratory have demonstrated that
mice subjected to DIO result in fatty acid �-oxidation
being the major supplier of energy for the heart (Zhang L,
Ussher J, Lopaschuk G. unpublished data). Supporting
our findings, studies from Aasum and colleagues have
also shown that fatty acid �-oxidation rates are enhanced
in hearts from db/db mice and mice subjected to DIO (2,
3, 207, 245, 246, 324). Work from Abel and colleagues, as
well as our laboratory, have also reproduced these find-
ings in perfused hearts from db/db mice and ob/ob mice
(60, 69, 387). In rodent models of type 1 diabetes, myo-
cardial fatty acid �-oxidation rates are also significantly
enhanced, and any observed depression in fatty acid �-ox-
idation rates is likely a result of a decline in function (292,
358, 367, 522, 606). Furthermore, studies using positron
emission tomography and [11C]palmitate imaging demon-
strate that obese women and type 2 diabetic patients have
an increased uptake and oxidation of fatty acids (229,
482). As a result, the preponderance of existing evidence
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suggests an increase in cardiac fatty acid �-oxidation
occurs in obesity and insulin resistance, as opposed to an
impaired fatty acid �-oxidation.

B. Transcriptional Alterations in Fatty Acid

Metabolism and �-Oxidation

In obesity and diabetes, an increase in circulating
FFA concentrations plays an important role in regulating

fatty acid metabolism due to increasing substrate supply.
However, these fatty acids may also directly modify the
expression of the enzymes of fatty acid metabolism, since
fatty acids and their derivatives can serve as endogenous
ligands for the PPAR family of nuclear receptors, with
PPAR� and its coactivator PGC-1 being particularly im-
portant in the heart (60, 173, 190, 423) (Fig. 3). Activation
of these nuclear receptors by fatty acids links the oxida-
tive capacity of the heart to substrate supply (69). It
appears that the early metabolic changes in obesity and
diabetes occur independent of changes in PPAR�/PGC-1
and their downstream transcriptional targets (5, 16). How-
ever, chronic overnutrition and obesity appear to activate
the PPAR�/PGC-1 signaling pathway, resulting in an in-
crease in the mRNA for gene proteins that control fatty
acid �-oxidation, including m-cpt1, fatp1, facs1, cd36,

ucp2, and ucp3 (5, 160). Increased PPAR� signaling was
only observed in 15-wk-old ob/ob and db/db mice associ-
ated with increased FFAs (db/db) and TAG and develop-
ment of hyperglycemia in both strains (60). Similarly, in
streptozotocin-diabetic rats, PPAR� activation is only as-
sociated with a prolonged increase in plasma lipids, but
not in acute diabetes (16). A number of studies observed
greater expression of PPAR�, PGC-1, and target genes in
both models of insulin resistance (131) and type 1 and 2
diabetes (41, 160, 573). Interestingly, cardiac specific
overexpression of PPAR� in mice accelerates fatty acid
�-oxidation and impairs the ability to utilize glucose, a
phenotype similar to the diabetic heart (131, 160). In
addition, PPAR� deficiency blunts the activation of fatty
acid metabolic genes observed in insulin resistance and
diabetes (41, 131).

Alterations in PPAR� and PGC-1 may also partially
account for the suppression of glucose metabolism found
in obesity and diabetes. PPAR� overexpressing mice have
a significant reduction in glucose transporter 4 (GLUT4)
mRNA and protein expression (160). In addition, PPAR�
null mice are protected from the decrease in GLUT4
expression and glucose uptake observed during ischemia
in wild-type mice subjected to streptozotocin-induced di-
abetes, high-fat diet, or a 24-h fast, all of which increase
circulating FFA concentrations (460). PPAR� activation
can also increase the transcription of pdk4, whose protein
product can phosphorylate and inhibit the PDH complex,
thus impairing glucose oxidation. Indeed, mice overex-
pressing PPAR� have increased PDK4 expression associ-
ated with decreased rates of glucose oxidation in the
heart (241), while mice lacking PPAR� have increased
rates of glucose oxidation (64, 548). Previous studies have
demonstrated that increased PPAR� signaling accounts
for an increase in PDK4 expression in a number of tissues
(4, 238, 241, 247, 616–618). However, it has also been
proposed that upregulation of PDK4 expression in heart
and oxidative muscle may be due to a fatty acid-depen-
dent, but PPAR�-independent mechanism (237, 239, 601).

FIG. 6. The contribution of fatty acid �-oxidation to lipotoxicity and
insulin resistance. In the setting of obesity and diabetes, increased
circulating free fatty acid (FFA) and very-low-density lipoprotein-tria-
cylglycerol (VLDL-TAG) concentrations result in an elevated lipid supply
to the cardiac myocyte. This excessive lipid supply leads to the cytosolic
accumulation of lipid metabolites such as TAG, long-chain acyl CoA,
diacylglycerol (DAG), and ceramide. Increased levels of ceramide are
believed to cause apoptosis of cardiac myocytes, which can result in
contractile dysfunction, contributing to the cardiomyopathy observed in
the setting of obesity and diabetes. In addition, accelerated rates of fatty
acid �-oxidation lead to an increased production of acetyl CoA, which
causes feedback inhibition of pyruvate dehydrogenase (PDH) and sub-
sequent glucose oxidation, ultimately resulting in the development of
myocardial insulin resistance.
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In addition, mice deficient in PGC-1 also have a greater
reliance on glucose oxidation (336).

C. Alterations in Circulating Fatty Acids and

Adipokines and Their Regulation of Myocardial

Fatty Acid �-Oxidation in the Setting of Obesity

and Diabetes

Although the adipose tissue was once considered to
be a passive energy reservoir, its role as an endocrine
organ, by sensing changes in whole body energy metab-
olism and communicating these changes to the brain and
other organs, is now well established (668). Adipose tis-
sue synthesizes and secretes a number of hormones, such
as the adipokines leptin, adiponectin, serum retinol-bind-
ing protein-4, resistin, and visfatin, as well as proinflam-
matory cytokines that include interleukin (IL)-6 and tu-
mor necrosis factor-� (TNF-�) (668). Alterations in adi-
pokine concentrations and signaling contribute to the
metabolic phenotype in obesity and diabetes. Circulating
concentrations of leptin (107), serum retinol-binding pro-
tein-4 (199, 478), resistin (611), and visfatin (177, 570) are
positively correlated, and adiponectin (22, 103, 204) neg-
atively correlated with fat adipose mass and accumula-
tion in skeletal muscle and/or liver and insulin resistance.
As discussed below, leptin and adiponectin can impact
myocardial energy substrate metabolism. The role that
serum retinol-binding protein-4 and visfatin play still re-
mains to be investigated. Resistin may play a small role in
myocardial metabolism by impairing glucose transport
(202).

1. Regulation of myocardial fatty acid �-oxidation by

leptin

Despite significant literature on the role of leptin in
modulating whole body and skeletal muscle metabolism,
there is limited direct evidence that leptin can modulate
fatty acid metabolism in the heart. Treatment of HL-1
cardiac myocytes with leptin for 1 h significantly in-
creases fatty acid �-oxidation, an effect associated with
decreased intracellular lipid content, while prolonged ex-
posure for 24 h decreases fatty acid �-oxidation leading to
increased intramyocardial lipid content (457). Interest-
ingly, this time course of leptin action parallels changes in
AMPK and ACC phosphorylation, with an increase in
phosphorylation at 1 h and no difference at 24 h. These
observations are analogous to data obtained in skeletal
muscle, where leptin-induced increases in fatty acid �-ox-
idation are attributed to the regulation of the AMPK/ACC/
malonyl CoA signaling axis (405, 406, 623). Treatment of
isolated working rat hearts with leptin also increases fatty
acid �-oxidation of both exogenously and endogenously
derived fatty acids, and is associated with a decrease in
intramyocardial TAG stores (24). The greater reliance on

fatty acids as a source of oxidative metabolism is associ-
ated with an increase in MV̇O2 and a decrease in cardiac
efficiency (24). However, in contrast to what was ob-
served in the HL-1 cardiac myocytes, the leptin-induced
acceleration of fatty acid �-oxidation occurs indepen-
dently of changes in cardiac AMPK or ACC, but may be
explained by an increased activity of mitochondrial un-
coupling proteins. As mentioned earlier, and in contrast to
the effects of leptin on fatty acid �-oxidation rates in
isolated hearts and cardiac myocytes, ob/ob and db/db

mice also display increased myocardial fatty acid �-oxi-
dation rates (60, 69, 387). However, this is most likely a
secondary effect from a number of other alterations in
these genetically modified animals, some of which include
increased adiposity and plasma concentrations of FFAs
and TAGs, as well as increased expression of a number of
target genes in the PPAR� pathway (60). More specific
detail with regard to the regulation of myocardial fatty
acid �-oxidation rates in ob/ob and db/db mice is dis-
cussed in section IIIA.

2. Regulation of myocardial fatty acid �-oxidation by

adiponectin

Similar to what is observed with leptin, adiponectin
stimulates fatty acid �-oxidation in skeletal muscle via the
AMPK/ACC/malonyl CoA signaling axis, although there is
limited evidence that a similar mechanism occurs in the
heart. Globular adiponectin (gAd) can potentially stimu-
late fatty acid �-oxidation in neonatal rat ventricular myo-
cytes via an activation of AMPK and p38, leading to both
an increase in CPT 1 activity and a decrease in malonyl
CoA inhibition of CPT-1; however, actual rates of fatty
acid �-oxidation have not been assessed (341). Incubation
of neonatal rat ventricular myocytes with the hexameric/
high-molecular-weight adiponectin also stimulates fatty
acid �-oxidation via an AMPK-dependent signaling path-
way through p38, and an AMPK-independent signaling
pathway via p42/44 (414). In isolated working 1-day-old
rabbit hearts, gAd significantly stimulates fatty acid �-ox-
idation via an AMPK/ACC-independent mechanism, while
hexameric/high-molecular-weight adiponectin has no ef-
fect on fatty acid �-oxidation (445). gAd and hexameric/
high-molecular-weight adiponectin are also unable to ac-
tivate AMPK in isolated working mouse hearts (360).
Recently, Palanivel et al. (458) have demonstrated that
both gAd and adiponectin can stimulate fatty acid �-oxi-
dation in neonatal cardiac myocytes, an effect associated
with increased AMPK and ACC phosphorylation as well
as decreased ACC activity (458). Interestingly, these au-
thors also demonstrated that both gAd and adiponectin
can stimulate fatty acid uptake via increased FATP1 ex-
pression (458).

Similar to what is observed with adiponectin treat-
ment, conditioned medium from normal adipocytes can
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increase palmitate uptake and oxidation, as well as glu-
cose uptake and oxidation in neonatal cardiac myocytes
(459). However, conditioned medium from streptozotocin
diabetic rat adipocytes has an impaired ability to increase
palmitate uptake, glucose uptake, AMPK phosphoryla-
tion, and glucose oxidation and actually inhibited palmi-
tate oxidation and stimulated lactate production in car-
diac myocytes (459). This study highlights the fact that
adipokines should not be studied in isolation, but as
physiologically relevant adipokine mixtures.

The significance of the adiponectin-induced changes
in myocardial metabolism to obesity and diabetes re-
mains unclear. Potentially the reduction in adiponectin
associated with obesity may contribute to disease devel-
opment in the heart due to the association of body mass
index with a number of obesity-linked disorders. Interest-
ingly, caloric restriction is associated with significantly
elevated levels of adiponectin (134, 581, 725). Adiponectin
protects the heart from ischemia/reperfusion injury in
vitro (194) and in vivo (580, 634), as well as during the
development of concentric cardiac hypertrophy in re-
sponse to aortic constriction (579).

Taken together, there is limited evidence that leptin
and adiponectin can modify myocardial fatty acid metab-
olism, but further studies are required to delineate the
role of complex adipokine mixtures similar to those
present during obesity and diabetes, on myocardial fatty
acid metabolism and subsequent cardiac function and
efficiency.

D. Contribution of Fatty Acid �-Oxidation to

Insulin Resistance and Cardiac Pathology

Recent studies suggest that in the setting of obesity
and type 2 diabetes, the heart has an impaired ability to
oxidize fat and that the stimulation of fatty acid �-oxida-
tion could benefit cardiac function by preventing the ac-
cumulation of intramyocardial lipids (573, 710, 712). Stud-
ies mainly in skeletal muscle have led to the postulation
that the cytosolic accumulation of TAG, long-chain acyl
CoA, DAG, and/or ceramide results from an impaired
ability of the skeletal muscle to oxidize fatty acids in the
setting of obesity and type 2 diabetes, and that these
molecules subsequently impede insulin signaling via acti-
vation of the classical/novel protein kinase C signaling
cascade (91, 92, 480, 588, 589, 718). Moreover, they have
suggested that by enhancing the capacity of skeletal mus-
cle to oxidize fatty acids, the cytosolic accumulation of
these metabolites can be attenuated, thereby improving
insulin signaling and glucose uptake, and ameliorating
insulin resistance (91, 92, 480, 588, 589, 718). A caveat of
the proposal that impaired fatty acid �-oxidation contrib-
utes to insulin resistance is that acceleration of fatty acid
�-oxidation would decrease glucose oxidation via inhibi-

tion of PDH and phosphofructokinase, and thus reduce
insulin-stimulated glucose metabolism based on the
Randle cycle (495–497).

1. Myocardial insulin resistance

Insulin resistance is generally defined as a decrease
in the action of insulin (stimulation of glucose uptake or
oxidation, inhibition of lipolysis in adipocytes, or activa-
tion of downstream targets like Akt). Systemic insulin
resistance, such as observed with diabetes, metabolic
syndrome, obesity, or a sedentary life-style, generally el-
evates circulating FFA, TAG, glucose, and insulin. There
are extensive data showing clear insulin resistance in
obesity, type 2 diabetes, or physical inactivity in skeletal
muscle, as seen in less insulin stimulation of glucose
uptake, oxidation, or activation of Akt. On the other hand,
there is growing evidence that there is little or no loss of
insulin sensitivity in the heart in type 2 diabetes. Studies
measuring the effects of hyperinsulinemia on glucose up-
take in the human heart show either minor or no insulin
resistance in patients with type 2 diabetes compared with
nondiabetic control subjects (471, 655). This is particu-
larly evident when plasma FFA levels are matched (260).
Similar results have recently been reported in a genetic
mouse model of type 2 diabetes (208), thus supporting the
general concept that insulin responsiveness in the heart is
relatively intact in type 2 diabetes (399). This is in clear
contrast to skeletal muscle and adipose tissue, where
insulin resistance results in elevated plasma glucose and
FFA concentrations. The constant exposure of the heart
to high FFA and glucose could exert toxic effects from the
generation of noxious derivatives of glucose and lipid
metabolism (87). Thus, while the heart may be less sus-
ceptible to insulin resistance than skeletal muscle, sys-
temic insulin resistance may have a profound negative
effect on the myocardium through the toxic effects of
substrate overabundance (87).

Recent studies using mice deficient for ACC�
(ACC��/�) show reduced malonyl CoA levels and ele-
vated myocardial fatty acid �-oxidation rates. However,
despite an increase in myocardial fatty acid �-oxidation
rates, ACC��/� mice also have a significant increase in
myocardial glucose oxidation rates and insulin stimulated
2-deoxyglucose uptake compared with their wild-type
counterparts. Although these results suggest that acceler-
ating fatty acid �-oxidation via inhibition of ACC may
benefit the insulin-resistant heart in the setting of obesity
and diabetes, the reported glucose oxidation rates were
�10- to 20-fold lower than the vast majority of rates
reported in the literature. In addition, the authors ob-
served an increase in both glucose oxidation and fatty
acid �-oxidation rates, but no increase in oxygen con-
sumption, presumably due to less oxidation of endoge-
nous substrates. While these data are consistent with the
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absence of the Randle cycle in skeletal muscle, numerous
studies have clearly demonstrated that the Randle cycle is
operative in cardiac muscle (348, 446, 609) and argue
against accelerating fatty acid �-oxidation as a strategy to
improve insulin signaling and function in the heart (360).
Moreover, recent work from our laboratory has shown
that mice deficient for MCD (MCD�/�) subjected to a
chronic high-fat diet (60% energy intake from lard) have a
marked preservation of insulin-stimulated glucose metab-
olism compared with wild-type mice subjected to the
same high-fat diet (651). MCD�/� mice have an elevation
of malonyl CoA and subsequent reduction in the mito-
chondrial uptake of fatty acids, resulting in an increase in
intramyocardial TAG. Despite this increase in TAG, there
are no signs of cardiac dysfunction in MCD�/� mice,
suggesting that an inhibition of mitochondrial fatty acid
uptake and oxidation do not adversely affect the heart in
the setting of obesity and may actually have beneficial
effects on insulin sensitivity. Further support for the lack
of adverse cardiac effects of suppressed fatty acid �-oxi-
dation comes from studies with long-term pharmacologi-
cal inhibition of CPT 1, which found no cardiac dysfunc-
tion in normal or hypertensive rats despite elevated in-
tramyocardial TAG levels (441). In contrast, deletion of
ATGL (ATGL�/�) in mice results in a dramatic increase
in intramyocardial TAG accumulation, which is associ-
ated with a decline in cardiac function (206). However,
these mice show improved insulin sensitivity and glucose
uptake in the heart. Although myocardial fatty acid �-ox-
idation rates were not measured in these studies, elevated
respiratory exchange ratios and lower whole body oxygen
consumption in ATGL�/� mice suggest that fatty acid
�-oxidation rates are indeed lower in these animals. Fur-
thermore, it has recently been shown that PPAR� ago-
nism in mice subjected to DIO improves postischemic
recovery, which is associated with a reduction in plasma
FFA levels and myocardial fatty acid �-oxidation rates
(3). Although cardiac PPAR� agonism in isolation should
increase fatty acid �-oxidation rates, peripheral PPAR�
agonism results in a dramatic increase in hepatic fatty
acid �-oxidation rates. Such an effect would likely reduce
hepatic TAG synthesis, decreasing hepatic TAG secretion
and subsequently decreasing fatty acid delivery to the
heart, explaining why myocardial fatty acid �-oxidation
rates were decreased in this particular study. Indeed,
plasma TAG concentrations were also decreased, and
PPAR� agonism in moderately overweight human sub-
jects has also been recently shown to reduce plasma TAG
concentrations with no effect on plasma FFA concentra-
tions (515). In addition, treatment of hearts from db/db

mice with high glucose-high insulin improves postisch-
emic recovery, an effect associated with a reduction in
myocardial fatty acid �-oxidation rates and a subsequent
increase in glucose oxidation rates (207). Finally, treat-
ment with the PPAR� agonist rosiglitazone improves car-

diac efficiency in hearts from db/db mice, an effect once
again associated with a reduction in plasma FFA levels
and myocardial fatty acid �-oxidation rates, resulting in a
subsequent increase in glucose oxidation rates (246).

2. Lipid-induced cardiac pathology

The intramyocardial accumulation of lipid metabo-
lites (TAG and ceramide) in obesity and diabetes is also
associated with cardiac pathology, which manifests with
increased cardiac myocyte apoptosis, myocardial fibrosis,
LV chamber expansion, contractile dysfunction, and im-
paired diastolic filling (156, 392, 555, 609, 648, 649, 700,
707, 724). While this general phenomenon has been ob-
served in several genetic models in mice and rats, and has
been broadly referred to as “cardiac lipotoxicity,” it re-
mains poorly defined and continues to lack a clinical
equivalent condition. For example, obese Zucker diabetic
rats develop cardiac dilatation and reduced contractility,
effects that are associated with elevated intramyocardial
TAG, ceramide, and increased DNA laddering, a marker of
apoptosis (724). Interestingly, treatment of these animals
with the PPAR� agonist troglitazone suppressed plasma
TAG levels and reduced intramyocardial TAG and cer-
amide accumulation, which was associated with a com-
plete prevention of DNA laddering and restoration of
cardiac function. Moreover, cardiac overexpression of
FACS results in lipid accumulation, cardiac hypertrophy,
gradual progression to LV dysfunction, and ultimately
premature death (89). Cardiac overexpression of human
lipoprotein lipase utilizing an anchoring sequence to lo-
calize the enzyme to the surface of cardiac myocytes
causes LV chamber enlargement and impaired contractile
function compared with wild-type counterparts (700).

It has been proposed that a downregulation of
PPAR� and decreased expression of fatty acid �-oxida-
tion enzymes causes intramyocardial lipid accumulation
that contributes to the cardiac dysfunction that is some-
times observed with obesity, insulin resistance, and dia-
betes (87, 710, 712). This idea was supported by the
observation that obese and type 2 diabetic patients with
heart failure had a dramatic increase in intramyocardial
lipid accumulation, which is attributed to impaired fatty
acid �-oxidation due to a reduction in a number of PPAR�
target gene transcripts (573). However, it is important to
note that this study lacked an obese group without heart
failure. Consuming a high-fat diet significantly increased
body mass, intramyocardial TAG, and ceramide contents
in rats with established infarct-induced heart failure, but
did not negatively effect LV chamber dimensions, pres-
sure, or mass (416), suggesting that lipid accumulation in
the heart is not detrimental in heart failure.

Nonetheless, as discussed in the prior sections, stud-
ies in hearts from obese/insulin-resistant humans and ro-
dents have not observed decreases in fatty acid �-oxida-
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tion, but rather the opposite (26, 38, 73, 365, 387). It is also
important to note that our recent work shows that sub-
jecting mice to DIO for a 12-wk period does not result in
any type of cardiac dysfunction, despite causing an accu-
mulation of long-chain acyl CoA (651). We have also
shown in a rat model of high-fat feeding that inhibition of
CPT 1 via oxfenicine treatment leads to a significant
elevation in intramyocardial TAG stores beyond that of
high-fat feeding alone, but does not result in the develop-
ment of cardiac hypertrophy or dysfunction (441). Fur-
thermore, the inhibition of mitochondrial fatty acid up-
take and fatty acid �-oxidation has been shown in a
number of animal and human studies to prevent the pro-
gression of, or reverse the severity of, heart failure (37,
115, 172, 345, 524, 531–533, 643, 717) (see sect. IVD).

While the toxic effects of lipid accumulation in the
heart can be demonstrated in rodent models, the clinical
significance of these findings is not clear in patients with
obesity, type 2 diabetes, and heart failure. Epidemiologi-
cal studies demonstrate that obese individuals have a
decrease in life expectancy, a greater risk for developing
heart failure, and greater mortality from cardiovascular
disease (167, 249, 286). However, once a patient is diag-
nosed with heart failure, there is a paradoxical reduction
in the rate of mortality in obese compared with lean
patients (119, 242, 329, 330). These observations are com-
plicated by findings demonstrating that cachexia is a pos-
itive predictor of mortality in heart failure and that weight
loss is strongly associated with poor outcome (20, 119,
609). Furthermore, strong evidence is lacking to suggest
that obese individuals with chronically elevated plasma
TAG or FFAs have elevated intramyocardial lipid accu-
mulation or lipid-induced cardiac pathology (360). In a
small study, heart failure patients with elevated intramyo-
cardial TAG stores had more severe changes in the mRNA
levels of genes known to be altered in severe heart failure
(i.e., myosin heavy chain-�), yet there was no evidence of
worse clinical heart failure or contractile dysfunction in
this subgroup (573). Thus further research is required to
determine the true significance of lipid accumulation and
the development of lipotoxicity in the heart in both animal
and human studies.

E. Cardiac Efficiency in Obesity and Diabetes

In obesity and diabetes, there is an increase in MV̇O2

and a decrease in cardiac efficiency, which has been
observed in both animals (54, 55, 60, 244, 387) and hu-
mans (482, 483). This is not surprising, as oxidation of
fatty acids is less oxygen efficient than glucose as an
energy source (see sect. IIJ). In streptozotocin-diabetic
mouse hearts, a 57% increase in unloaded MV̇O2 is seen,
which occurs independent of changes in circulating fatty
acids, and a 86% increase in unloaded MV̇O2 is seen in

db/db mice paired with a decrease in contractile efficiency
at high concentrations of fatty acids (244). Although a
similar decrease in cardiac efficiency is observed in a
number of studies, the mechanism by which efficiency is
impaired differs. How et al. (244) demonstrated only a
slight impairment in cardiac output in db/db hearts and no
impairment in hearts from streptozotocin-treated mice,
although other studies have demonstrated a significant
reduction in cardiac work in addition to increased myo-
cardial oxygen consumption (1, 54, 60, 68, 193, 387). De-
spite the differences in mechanisms, these studies sup-
port the concept that cardiac efficiency is reduced in
diabetic mouse hearts. In contrast, some studies have
reported normal cardiac efficiency in the Zucker diabetic
fatty rat despite elevated rates of fatty acid �-oxidation
(526, 590, 673).

Another potential mechanism for cardiac inefficiency
in obesity and diabetes is oxygen wasting due to energy
use for noncontractile purposes. Mitochondrial dysfunc-
tion has been identified in a number of models of obesity
and diabetes, suggesting that compensatory mechanisms
eventually become maladaptive (577, 578, 645, 646). In-
deed, even though PGC-1 and its downstream target genes
that regulate fatty acid �-oxidation are increased in db/db

mice, there is not a concomitant increase in the genes of
oxidative phosphorylation (5). In addition, in the ob/ob

mouse, protein contents of complexes I, III, and V are
reduced, and isolated mitochondria have a reduced oxi-
dative capacity (5). Mitochondrial uncoupling, as evi-
denced by reduced P/O ratios and measures of proton
leak kinetics, have demonstrated increases in oxygen con-
sumption as well as increases in fatty acid �-oxidation in
a number of models of obesity and diabetes (55, 131). A
potential mechanism leading to this mitochondrial uncou-
pling is either the increase in activity and/or expression of
uncoupling proteins, particularly UCP3, in hearts from
obese and diabetic animals (55, 60, 231, 422, 423, 713). In
addition to uncoupling proteins, the ANT has been dem-
onstrated to mediate fatty acid induced uncoupling.
ANT1, the major isoform expressed in the adult heart, is
involved in the transport of fatty acid anions out of the
mitochondria into the cytosol, a process that is inhibited
by carboxyatractyloside (18, 19, 129, 560, 593, 691).

In addition to mitochondrial uncoupling, oxygen can
also be utilized for other noncontractile processes, includ-
ing fatty acid esterification and the production of reactive
oxygen species (407, 664, 665). This mitochondrial dys-
function may partially account for the cardiac phenotype
of obesity and diabetes due to increased production of
ROS and subsequent oxidative stress (55, 175, 342, 553,
577, 662, 705, 706). Cardiac efficiency may also be reduced
by flux through futile cycles that waste ATP, which may
include the cytosolic and mitochondrial thioesterases and
the FACS reactions; indeed, cardiac expression of cyto-
solic thioesterase 1 and MTE 1 are elevated following
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streptozotocin-induced diabetes and high-fat feeding (132,
187, 235, 296).

F. Functional Consequences of Altered Fatty Acid

Metabolism in Obesity

It is well established that obese individuals are at an
increased risk of developing cardiovascular disease (249,
280, 503). While patients with obesity have an increased
risk for ischemic heart disease, a significant proportion of
these patients will develop heart failure independent of
ischemia (13, 694). A number of changes to the myocar-
dium contribute to the dysfunction observed in the pa-
tient with obesity, such as altered sarcoplasmic reticulum
calcium handling (52, 477, 484), but we will focus on the
contribution of altered fatty acid �-oxidation to these
processes.

A number of studies in both humans and animals
have suggested a link between excessive rates of fatty
acid �-oxidation in the heart and alterations in cardiac
function. For instance, healthy patients placed on a 3-day
very-low-calorie diet (VLCD) to induce elevations in
plasma fatty acid levels have an increase in intramyocar-
dial TAG stores, which is associated with a reduction in
the deceleration of the early filling phase of the LV, an
index of diastolic function (659). Treatment of patients
with type 2 diabetes on a 3-day VLCD with the antilipoly-
tic agent acipimox was able to reduce intramyocardial
TAG stores and restore diastolic function (217). Unfortu-
nately, these studies did not investigate what effect this
protocol had on levels of other lipid metabolites and rates
of myocardial fatty acid �-oxidation. A prolonged VLCD
results in a dose-dependent increase in intramyocardial TAG
stores and subsequent decline in diastolic function in
healthy patients (218). In addition, a prolonged VLCD in
obese patients with type 2 diabetes showed a decrease
in both body mass index and intramyocardial TAG stores,
while diastolic function was restored (216). Similarly,
healthy people who subject themselves to chronic food re-
striction have significantly improved LV indexes of diastolic
function compared with age-matched controls (403). How-
ever, one must use caution when interpreting the results of
such findings, as cachexia is associated with a poorer out-
come in patients with heart failure (20, 119, 609).

Cardiac-specific overexpression of FATP1 results in
an excessive fatty acid supply to the heart that is not
accompanied by a parallel increase in fatty acid metabo-
lism, and no apparent systolic dysfunction, but predomi-
nant diastolic dysfunction as seen with the increase in the
E/A ratio and decrease in the deceleration filling time of
the LV (90). In addition, mice with a cardiac-specific
overexpression of PPAR� also demonstrate systolic dys-
function via echocardiography, which was associated
with an elevation in myocardial fatty acid �-oxidation

rates (160). Because these mice have a cardiac phenotype
that is similar to what is observed in type 2 diabetes, one
cannot discern whether it is the increase in fatty acid
�-oxidation rates or some other effect of PPAR� that is
responsible for the development of systolic dysfunction in
these animals. Finally, mice with a cardiac-specific over-
expression of FACS develop cardiac hypertrophy with
severe systolic function and premature death due to heart
failure (89).

G. Functional Consequences of Altered Fatty Acid

Metabolism in Diabetes

In parallel with the setting of obesity, diabetic indi-
viduals are at an increased risk of developing cardiovas-
cular disease (249, 280, 503) and can develop heart failure
independent of ischemia (155, 404, 503, 505, 522, 523). The
heart failure may be accompanied without a reduction in
LV ejection fraction, or systolic dysfunction may be ap-
parent in the form of a reduced LV ejection fraction and
ejection time, which may occur even in young diabetics
(9, 503, 552). Diastolic dysfunction is also observed with
elevations in LV end-diastolic pressure, which impairs
diastolic filling of the ventricle and affects compliance
(503, 504).

As the pathological consequences of intramyocardial
accumulation of lipids have been proposed to contribute
to the development of cardiomyopathy (see sect. IIID), it
has been postulated that an impairment in cardiac fatty
acid �-oxidation plays a major role with its progression in
type 2 diabetes (88, 303, 360, 571, 609, 627, 702). Interest-
ingly, numerous studies in rodent models of diabetes also
report decrements in systolic function via echocardiogra-
phy, such as studies in Zucker diabetic fatty rats and in
db/db mice (569, 710, 724), and, as mentioned previously,
hearts from db/db mice actually exhibit increased rates of
fatty acid �-oxidation, reduced cardiac efficiency, and
eventual contractile dysfunction (2, 60, 66, 69, 207, 245,
246, 387). Hearts from db/db mice that overexpress the
GLUT4 transporter have a normalization of myocardial
fatty acid �-oxidation rates and a restoration of glucose
utilization and function (38). In addition, mice with a
cardiac overexpression of PPAR� have a phenotype mim-
icking that seen in type 2 diabetes, which is associated
with elevated fatty acid �-oxidation rates, systolic dys-
function, and ventricular hypertrophy as determined by
echocardiography (160). If these mice are placed on a
high-fat diet enriched with long-chain fatty acids, they
developed worse cardiac dysfunction, but not when fed
medium-chain fatty acids (156). This may be due to in-
creased cardiac myocyte apoptosis from long-chain fatty
acid-derived ceramide, or inhibited mitochondrial uptake
of long-chain fatty acids through CPT 1, resulting in in-
creased delivery of long-chain fatty acids to the peroxi-
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somes for oxidation and subsequent production of toxic
hydrogen peroxide. As medium-chain fatty acids do not
require CPT 1 for access to the mitochondrial �-oxidative
machinery, they would bypass these potential toxic by-
product producing pathways. Cardiac overexpression of
PPAR� in mice yielded a similar effect, as fatty acid
uptake, storage, and oxidation enzymes were all in-
creased concomitantly with intramyocardial stores of
TAG and ceramide, which was associated with a reduc-
tion in contractile function (598). Unfortunately, direct
measurements of myocardial fatty acid �-oxidation and
glucose oxidation were not assessed. Interestingly, if de
novo ceramide production was prevented via inhibition of
serine palmitoyltransferase, elevated fatty acid �-oxida-
tion rates were normalized with a complete restoration of
glucose oxidation rates in mice with a cardiac overexpres-
sion of glycosylphosphatidylinositol-anchored human
LPL (469). These metabolic changes were also associated
with an improvement in contractile function. Cardiac
overexpression of either FACS or FATP1 leads to the
development of a lipotoxic cardiomyopathy that is asso-
ciated with elevations in intramyocardial lipid accumula-
tion (88, 89).

Accelerated fatty acid and/or ketone body oxidation
and a reciprocal decrease in glucose oxidation are also
believed to play a role in the initial processes that lead to
a decline in cardiac function in type 1 diabetics (522). As
such, in rodent models of type 1 diabetes, inhibition of
fatty acid �-oxidation is associated with improvements in
LV contractile performance. Streptozotocin-induced dia-
betes in rats results in a reduction in cardiac function in
isolated working hearts 30 days postinjection (656, 657).
Perfusion of these hearts with the CPT 1 inhibitor methyl
palmoxirate reduces the diabetes-induced elevation in
intramyocardial long-chain acylcarnitines and restores
cardiac function (628). Furthermore, inhibition of CPT 1
with etomoxir in streptozotocin diabetic rats leads to a
doubling of myocardial glucose oxidation rates and re-
stores the decline in cardiac function (670). Interestingly,
overcoming fatty acid-induced inhibition of glucose oxi-
dation via direct stimulation of PDH with DCA restores
contractile performance in hearts from rats with strepto-
zotocin-induced diabetes (434).

Aging is also associated with the development of
insulin resistance and cardiomyopathy (303, 319, 479),
where in both cases, once again, an impairment in fatty
acid �-oxidation has been proposed to contribute to the
development of both diseases (285, 479, 514, 594). On the
contrary, FAT/CD36-deficient (CD36�/�) mice fed regu-
lar chow have an improved basal insulin sensitivity and
are protected from high-fat diet-induced insulin resis-
tance (210). Furthermore, although they have a marked
reduction in cardiac fatty acid �-oxidation rates, likely
through the Randle cycle, they have a compensatory in-
crease in glucose oxidation (311). Although aging is asso-

ciated with the development of insulin resistance and a
steady decline in cardiac function, hearts from aged
CD36�/� mice do not fail at elevated work loads com-
pared with wild-type counterparts, which was due to a
preservation of cardiac glucose oxidation rates (303). Re-
cently, it has also been demonstrated that chronic high-fat
feeding of rats leads to the development of insulin resis-
tance and a diabetic cardiomyopathy, which was associ-
ated with the relocation of FAT/CD36 into the sarcolem-
mal membrane and enhanced rates of long-chain fatty
acid uptake and intramyocardial TAG content (455). In-
terestingly, deletion of FAT/CD36 in mice with a cardiac
overexpression of PPAR� rescues the lipotoxic cardiomy-
opathy of these animals, which is associated with a re-
duction in intramyocardial TAG content, a restoration of
myocardial glucose oxidation rates, and a trend to a re-
duction in fatty acid �-oxidation rates (702).

In summary, it does appear from numerous studies
that lipid accumulation from an excessive fatty acid sup-
ply contributes to the development of cardiomyopathy in
rodent models of obesity and diabetes. However, an im-
paired ability of the heart to oxidize fatty acids does not
appear to play a significant role in this process, as inter-
ventions that either normalize or reduce myocardial fatty
acid �-oxidation rates appear to have beneficial effects on
diabetic cardiomyopathy in animals and humans.

IV. MYOCARDIAL FATTY ACID METABOLISM

IN HEART FAILURE

Heart failure can have a profound impact on cardiac
fatty acid metabolism via both systemic and cardiac-spe-
cific mechanisms (see Ref. 609 for review of cardiac
energy metabolism in heart failure). However, the effects
of heart failure on fatty acid metabolism are complex, due
in large part to the complexity of heart failure itself. Heart
failure is not a disease but rather a complex clinical
syndrome that is generally defined as an impaired ability
of the ventricle to fill with and eject blood (251). The
etiology of heart failure is complex, but is broadly divided
into two main categories: 1) ischemic heart failure (pa-
tients with a history of coronary artery disease and/or
myocardial infarction), and 2) nonischemic idiopathic
heart failure. Most heart failure patients have a history of
hypertension (�75%) and LV hypertrophy (198). Approx-
imately 50–60% of heart failure patients have an enlarged
LV chamber and reduced ejection fraction, while 40–50%
have a normal LV volume and ejection fraction (43, 456).

A. Systemic Effects of Heart Failure on Myocardial

Fatty Acid Metabolism

Assessment of myocardial fatty acid metabolism in
heart failure is confounded by changes in the circulating
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concentration of FFAs and ketone bodies (�-hydroxybu-
tyrate and acetoacetate), as well as by the fact that �30%
of heart failure patients in developed countries have dia-
betes, which in itself can have dramatic effects on fatty
acid metabolism (as discussed in sect. III). With regard to
circulating substrate supply, studies by Lommi and co-
workers (352, 353) found a higher rate of plasma FFA
turnover and elevated FFA concentration in heart failure
patients compared with controls, which exposes the heart
to a greater FFA load and could increase myocardial FFA
uptake and �-oxidation through simple mass action (688).
Circulating FFA levels can also increase in the setting of
acute heart failure, where the catecholamine surge during
this period can increase circulating fatty acid levels (352,
353, 464), which can lead to an increase in fatty acid
�-oxidation in the heart. In contrast, there can also be
increases in ketone bodies in heart failure patients, which
is associated with the severity of heart failure (351–353).
Relatively modest elevations in ketone bodies inhibit
myocardial fatty acid uptake and oxidation in humans,
pigs, and isolated cardiac myocytes (82, 168, 226, 322, 346,
607, 661), suggesting that in heart failure a normal or low
uptake of fatty acids could be partially explained by high
circulating concentrations of ketone bodies. Data on car-
diac ketone body uptake and/or oxidation in heart failure
has not been reported. In vivo studies on the effects of
heart failure should take into consideration the impact
these differences in circulating FFA and ketone bodies
have on myocardial substrate metabolism (e.g., using re-
gression analysis to separate myocardial effects from sub-
strate delivery).

B. Direct and Indirect Measurements of Fatty Acid

�-Oxidation in Heart Failure

Few studies have directly measured myocardial fatty
acid metabolism in heart failure patients or large-animal
models. There are two reports of direct invasive measure-
ment of myocardial fatty acid metabolism in heart failure
patients. Paolisso et al. (464) measured the net extraction
of FFA by the myocardium using simultaneous arterial
and coronary sinus sampling in patients with moderately
severe heart failure [New York Heart Association (NYHA)
Class II and III] and in age-matched healthy individuals.
The rate of fatty acid �-oxidation was estimated from the
transmyocardial respiratory quotient. Heart failure pa-
tients had elevated plasma norepinephrine and insulin as
well as a 50% increase in FFA concentrations. FFA uptake
and the estimated fatty acid �-oxidation rates were �40%
higher in heart failure patients than in controls, despite no
difference in coronary blood flow or the rate of cardiac
energy expenditure. More recently, direct measurements
were made of FFA oxidation in patients with dilated
cardiomyopathy using an infusion of [3H]oleate tracer and

arterial and coronary sinus sampling to assess oxidation
to 3H2O (429). Arterial FFA concentration was not differ-
ent between groups. Compared with control patients,
heart failure patients have reduced uptake and oxidation
of FFA both in absolute terms and when normalized to
myocardial oxygen consumption. FFA uptake was nega-
tively correlated with LV chamber enlargement (r �
�0.81), and lower FFA uptake and �-oxidation persisted
during and after acute pacing stress. These results show
that in dilated cardiomyopathy there is a preferential
decrease in FFA �-oxidation, which contrasts sharply
with the study by Paolisso et al. (464) described above.

A number of indirect measurements of myocardial
fatty acid metabolism have been performed in heart fail-
ure patients using noninvasive imaging with radiolabeled
fatty acid tracers. Measurements with positron emission
tomography (PET) using [18F]fluoro-6-thia-heptadeconic
acid and [18F]fluoro-deoxyglucose to estimate fatty acid
and glucose uptake in congestive heart failure patients
found fatty acid uptake to be higher and glucose uptake
lower than published literature values from healthy peo-
ple (635). A limitation of this study was the lack of a
contemporary control group. In contrast, Davila-Roman
et al. (118) used PET to assess myocardial blood flow,
energy expenditure, and fatty acid and glucose metabo-
lism using 15O-labeled water and 11C-labeled acetate,
palmitate, and glucose tracers in patients with nonisch-
emic idiopathic dilated cardiomyopathy (LV hypertrophy
and an ejection fraction of 27%) (118). Compared with
healthy volunteers, there were no differences in arterial
blood pressure, plasma FFA or insulin levels, or myocar-
dial blood flow and oxygen consumption. On the other
hand, calculated fatty acid uptake and �-oxidation were
decreased by �40%, and glucose uptake was doubled in
heart failure patients compared with controls. Studies
using the radiolabeled fatty acid analog 123I-�-methyl-io-
dophenylpentadecanoic acid (BMIPP) assessed regional
tracer kinetics and contractile function and found re-
duced tracer retention in dyskinetic segments in patients
with severe idiopathic dilated cardiomyopathy, consistent
with impaired fatty acid utilization in the failing myocar-
dium (704). Taken together, while there is variability
among these clinical investigations, in general the data
support the concept that in the absence of a significant
elevation in plasma FFA concentrations, there is a signif-
icant decrease in the rate of fatty acid �-oxidation in
advanced heart failure both in absolute terms and as a
fraction of myocardial oxygen consumption. These find-
ings are consistent with the data presented below show-
ing a decrease in the myocardial capacity for fatty acid
�-oxidation in animal models of heart failure.

Results from animal models of heart failure generally
support the concept of decreased fatty acid �-oxidation in
heart failure. Studies using the canine tachycardia model
of heart failure show a progressive fall in fatty acid uptake
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and oxidation measured either directly (435, 454, 492,
502) or with BMIPP (284). On the other hand, dogs with
moderate severity microembolization-induced heart fail-
ure showed normal myocardial FFA and glucose uptake
and oxidation (80), despite severe impairment in mito-
chondrial respiratory capacity and function (525, 575).
Results from the rat chronic coronary ligation model
show that 8 wk after infarction, there is clear LV dysfunc-
tion but normal myocardial oxygen consumption and
palmitate oxidation in isolated hearts perfused with
buffer containing erythrocytes (509). Rats studied 6 mo
after infarction (228) showed a decrease in cardiac palmi-
tate oxidation measured without erythrocytes in the per-
fusate; however, myocardial oxygen consumption was
not measured and may have been lower. A similar de-
crease in FFA oxidation was observed in rats with LV
hypertrophy and contractile dysfunction induced by ei-
ther aortic banding (12), volume overload caused by an
aortocaval fistula (95, 149, 150), or chronic spontaneous
hypertension (93). Thus, in rodent models of heart failure,
there is a decrease in the rate of myocardial fatty acid
oxidation.

C. Alterations in Transcriptional Control of Fatty

Acid �-Oxidation Enzymes in Heart Failure

There is extensive evidence to suggest impaired mi-
tochondrial function, including a decreased expression
and activity of proteins involved in cardiac fatty acid
uptake and oxidation in advanced heart failure. Patient
studies (536) found decreased mRNA and protein expres-
sion for selected enzymes of the fatty acid �-oxidation
pathway in myocardial samples from explanted hearts
from transplant recipients compared with nonfailing do-
nors. Specifically, mRNA levels were reduced for the
�-oxidation enzymes long-chain acyl CoA dehydrogenase
and MCAD, and protein levels of MCAD, with no change
in the mRNA encoding the glycolytic enzyme glyceralde-
hyde phosphate dehydrogenase. Martin et al. (386) found
no difference in the activity of CPT 1 but a decrease in
CPT 2 activity in LV myocardium from heart failure pa-
tients undergoing transplantation compared with nonfail-
ing donor hearts. The tissue concentration of long-chain
acylcarnitine was also elevated fourfold, and free carni-
tine decreased by 50%, which is consistent with reduced
CPT 2 activity. Dogs with end-stage tachycardia-induced
heart failure also show a downregulation of fatty acid
�-oxidation enzymes, including a decrease in the activity
of CPT 1 that corresponded with a comparable decrease
in fatty acid �-oxidation in vivo (337, 454). On the other
hand, dogs with microembolization-induced heart failure
had normal CPT 1 or MCAD activities (80, 462, 525), but
had a 40–50% decrease in mitochondrial state III respira-
tion with both lipid and nonlipid substrates (525, 575,

576), suggesting impaired function of the ETC and not a
selective decrease in fatty acid �-oxidation. Rodents with
infarct-induced heart failure (415, 416, 509, 527) or arterial
pressure overload (85, 86, 443, 536) generally show a
modest decrease in the activity and protein expression of
mitochondrial fatty acid �-oxidation enzymes. Isolated
mitochondria from rats with heart failure caused by an
aortocaval fistula have suppressed respiration with lipid
substrates, but not with glutamate or malate, suggesting
selective impairment of the capacity for fatty acid �-oxi-
dation in this model (149).

In general, the heart failure-induced downregulation
of mRNA for genes encoding proteins involved in fatty
acid uptake and �-oxidation is far more pronounced than
effects on protein expression and enzymatic activity (120,
337, 345, 415, 416, 443, 476, 527). Myocardial levels of
mRNA for key enzymes of the fatty acid �-oxidation path-
way, and also carbohydrate metabolism (glucose trans-
porters, glyceraldehyde phosphate dehydrogenase, and
pyruvate dehydrogenase), are decreased in dogs with end-
stage heart failure compared with normal myocardium
(337). Thus heart failure appears to suppress the tran-
scription of a broad array of metabolic enzymes and does
not selectively downregulate the expression of fatty acid
�-oxidation enzymes, nor upregulate glycolysis or pyru-
vate oxidation. Recent analysis of DNA microarray data
from heart failure patients found downregulation of
PGC-1� target genes involved in fatty acid metabolism
(591). In addition, there was a subset of genes controlled
by the PGC-1� regulatory partner, estrogen-related recep-
tor � (ERR�), which were also downregulated in heart
failure. The changes in PGC-1� and ERR� target genes
were positively correlated with LV ejection fraction, sug-
gesting that both PGC-1� and ERR� may regulate the
decrease in the mRNA for genes encoding proteins in the
mitochondrial fatty acid metabolism pathway in human
heart failure.

The mechanisms responsible for the heart failure-
induced decrease in the expression and activity of pro-
teins involved in myocardial fatty acid �-oxidation is not
well understood but appears to be partially the result of
reduced activation of gene expression by the PPAR�
pathway. As discussed in section I, PPAR� is a ligand-
activated nuclear receptor that forms a heterodimer with
the retinoic acid X receptor � (RXR�) and PGC-1� (40).
When stimulated by fatty acids, the PPAR�/RXR�/PGC-1�
complex binds to specific PPREs located within promoter
regions of genes encoding proteins involved in fatty acid
uptake and oxidation, as well as inhibition of pyruvate
oxidation (252). The activity of PPAR� decreases in re-
sponse to hypertrophic growth in vitro (32, 33), as re-
flected by a fall in the mRNA levels of genes regulated by
PPAR�. In vivo studies showed similar effects with ad-
vanced pressure overload-induced cardiac hypertrophy
(32, 442) and with heart failure in mouse, rat, and dog
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models (85, 86, 121, 318, 337, 345, 415–417, 476). The
mechanism for this effect is unclear, but unlikely to be
due to less ligand stimulation by fatty acids, as fatty acid
levels increase in heart failure (352, 353). There is some
evidence that there is a decrease in the protein levels of
PPAR� and RXR� in heart failure. PPAR� protein levels
were decreased by 54% in LV biopsies from five end-stage
heart failure patients compared with control donor hearts
(282). The expression of RXR� has not been reported in
heart failure patients; however, studies in the canine
tachycardia and rat hypertension-induced models of heart
failure found a significant decrease in RXR� protein levels
without a change in PPAR� (443, 454) or PGC1� (337).
Rats with myocardial infarct-induced heart failure
showed a significant reduction in the mRNA for both
PPAR� and RXR�, but no change in the expression of
these proteins (415). One likely possibility is that heart
failure disrupts the formation of the PPAR�/RXR�/
PGC-1� complex in the nucleus and/or binding to PPAR
response elements, as suggested by the marked down-
regulation of the PPAR�/RXR� complex in isolated car-
diac nuclei from rats with hypertension-induced cardiac
hypertrophy, despite no change in total protein levels for
PPAR� and RXR� (279). In a transgenic mouse model of
heart failure induced by targeted cardiac overexpression
of angiotensinogen, there is a decrease in the mRNA and
protein levels of PPAR� and its downstream targets CPT
1 and MCAD, particularly in mice with more severe heart
failure as evidenced by pulmonary congestion (476). De-
spite a 90% decrease in protein expression for PPAR�,
CPT 1, and MCAD in mice with severe heart failure there
is only a modest 25% decrease in the rate of palmitate
oxidation in perfused working hearts.

The role of the decrease in the activity of PPARs and
the capacity for myocardial fatty acid metabolism in the
progression of heart failure has recently been investigated
using selective agonists of PPAR�, -�/�, and -� in animal
models of chronic heart failure. Pharmacological activa-
tion of PPAR� was first shown to upregulate PPAR�-
regulated genes and worsen ex vivo LV function in rats
subjected to severe aortic hypertension (711). A subse-
quent study examining long-term treatment with fenofi-
brate in rats with established infarct-induced heart failure
found a 50% increase in the activity and protein expres-
sion of MCAD, but no effect on LV function or chamber
volume (416). Similar findings were found in a dog tachy-
cardia model of heart failure (318). On the other hand, in
the pig tachycardia model, the PPAR� agonist fenofibrate
partially prevented the deterioration in LV function (57).
Thus it appears that pharmacologically preventing the
downregulation of PPAR� and activity of its target genes
has little effect on the progression of heart failure. Taken
together, there is not strong evidence to support the
concept that deactivation of PPAR� and decreases in
mRNA levels of genes encoding proteins involved in fatty

acid metabolism contribute to the development or pro-
gression of heart failure.

Less is known about the role of PPAR�/� in the failing
heart. Mice with cardiac-specific deletion of PPAR�/� have
decreased expression of key fatty acid �-oxidation genes
and exhibited intramyocardial lipid accumulation and car-
diomyopathy (83). In contrast, mice with cardiac overex-
pression of PPAR�/� are strikingly different from PPAR�
overexpressing mice, as demonstrated by accelerated glu-
cose use and no lipid accumulation or cardiac dysfunction
(61). Treatment of rats with infarct-induced heart failure
with the PPAR�/� agonist GW610742X switched substrate
oxidation from fatty acids to carbohydrate but had little
effect on the mRNA expression of fatty acid metabolism
enzymes and did not affect LV chamber enlargement or
progression of heart failure (272). Treatment with a PPAR�
agonist had little effect on cardiac structure or function in
dogs with established microembolization-induced heart fail-
ure (624), and increased mortality in rats with infarct-in-
duced heart failure (378). The effects of a PPAR� agonist on
cardiac fat metabolism in heart failure have not been re-
ported.

D. Contribution of Altered Fatty Acid �-Oxidation

to Contractile Dysfunction in Heart Failure

As noted above, current evidence suggests that the
myocardial capacity for fatty acid �-oxidation is relatively
normal during the early development of heart failure,
while there is a clear decrease in fatty acid �-oxidation
capacity in the more advanced stages. Since fatty acids
are a less efficient fuel than carbohydrates, this has been
viewed by some investigators to be a positive adaptation.
Thus it has been proposed that pharmacological inhibi-
tion of fatty acid �-oxidation would be an effective treat-
ment for heart failure (see Ref. 609 for review). Results of
experiments in animal models of heart failure and small
clinical trials suggest that long-term treatment with the
CPT 1 inhibitors perhexiline (333), etomoxir (642, 643), or
oxfenicine (345), or the direct inhibitor of the fatty acid
�-oxidation trimetazidine (37, 115, 171, 647, 666) are in-
deed beneficial. The mechanism(s) for these beneficial
effects is not clear, but could be due to improved ATP
formation due to better mitochondrial coupling and de-
creased fatty acid �-oxidation, resulting in a higher rate of
ATP production at a given rate of myocardial oxygen
consumption (higher P/O ratio) (see sect. IIJ).

Our understanding of the underlying mechanisms re-
sponsible for the beneficial effects of CPT 1 inhibitors and
direct inhibitors of fatty acid �-oxidation in heart failure is
limited by a poor understanding of the fundamental ef-
fects of heart failure on mitochondrial structure, function,
and metabolism of fatty acids. Mitochondria in advanced
heart failure are characterized by a lower capacity for
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respiration and oxidative phosphorylation (see Refs. 432,
609 for review). In general, the literature supports the
concept that the main defects in cardiac mitochondria in
heart failure are not in generation of reducing equivalents
(NADH and FADH2), but rather in the respiratory appa-
ratus and oxidative phosphorylation (432, 609). An array
of defects in ETC complexes have been noted in various
forms of heart failure, with no consistency (432, 609). A
recent comprehensive examination of cardiac mitochon-
drial function dogs with coronary microembolization in-
duced heart failure found decreases of �40%-50% in ADP-
stimulated respiration that was not relieved by an uncou-
pler (525). Maximal respiration was similarly decreased
with palmityl CoA, palmitylcarnitine, glutamate, pyruvate,
or succinate plus rotenone as substrates, or with artificial
electron donors. While this suggests a defect in oxidative
phosphorylation within the ETC, the individual activities
of ETC complexes were normal, as were the activities of
TCA cycle enzymes (80, 462, 525). The amount of the
supercomplexes consisting of complex I/complex III
dimer/complex IV, the major form of the respirasome
essential for oxidative phosphorylation (130, 556, 557,
720, 721), was decreased, suggesting that the mitochon-
drial defect in heart failure lies in the supermolecular
assembly rather than in the individual components of the
ETC (180, 525). It is not known how agents that affect
fatty acid �-oxidation and have had favorable results in
small clinical trials in heart failure patients (trimetazidine
and perhexiline) affect assembly and function of the ETC.

As discussed in section VI, partial inhibition of myo-
cardial fatty acid �-oxidation during acute ischemia or
postischemia reperfusion can increase pyruvate oxidation
and decrease lactate production, which is associated with
improved contractile function and clinical improvement
during exercise or �-adrenergic agonist-induced stress in
patients with chronic stable angina (320, 602). This mech-
anism is unlikely to play a role in the improvement in LV
function in patients and animals with heart failure, as
evidenced by the relatively normal myocardial lactate
uptake during pacing stress (429) or exercise (17) in heart
failure patients. Further support for this concept comes
from studies in pigs with ischemic heart failure induced
by chronic coronary artery constriction, where there is no
myocardial lactate production during intense �-adrener-
gic stimulation despite a chronic reduction in contractile
function and MV̇O2 at rest (152).

Another effect of long-term treatment with a CPT 1
inhibitor is an increase in the mRNA levels for genes that
are regulated by PPAR� and other genes that are known
to be downregulated in heart failure (345, 441, 533). This
effect has been shown to prevent the decrease in protein
expression and activity of fatty acid �-oxidation enzymes
in advanced end-stage heart failure in dogs (345), and is
presumably mediated by an increase in the cytosolic con-
centration of the endogenous fatty acid ligands for PPAR�

which occurs with CPT 1 inhibition (343). Oxfenicine-
treated dogs with tachycardia-induced heart failure had
attenuated and delayed LV remodeling compared with
untreated animals, and maintained activity of citrate syn-
thase, a TCA cycle enzyme that is not regulated by
PPAR�, suggesting that CPT 1 inhibition may preserve or
restore mitochondria function in heart failure.

V. ALTERATIONS IN FATTY ACID

METABOLISM IN THE SETTING OF

ISCHEMIC HEART DISEASE

Myocardial ischemia occurs when coronary blood
flow is inadequate, and hence, the oxygen supply to the
myocardium is not sufficient to meet oxygen demand.
Due to the heart’s high demand for energy and thus high
rates of oxidative metabolism utilized to drive cardiac
contraction, the manifestations of myocardial ischemia
are dependent on the nature and severity of the ischemic
episode and the subsequent reestablishment of flow
(reperfusion). Ischemic heart diseases ranging from an-
gina pectoris to acute myocardial infarction and heart
failure impact both cardiac metabolism and function. In
the normal heart, energy metabolism and cardiac func-
tion are exquisitely matched; however, ischemia elicits
disturbances in the balance between fatty acid and
glucose oxidation. The predominance of fatty acid
�-oxidation as a source for ATP generation at the ex-
pense of glucose oxidation during reperfusion follow-
ing ischemia negatively influences cardiac efficiency
(see sect. IIK) and function in isolated perfused hearts.
Recent data in humans also support this concept, be-
cause use of a comprehensive metabolomics approach
revealed that fatty acid extraction persisted as the ma-
jor fuel substrate contributing to myocardial ATP re-
quirements in patients with coronary artery disease
after reperfusion following cardiac surgery versus con-
trol patients (644). Thus optimizing energy substrate
metabolism such that the efficiency of both generating
and utilizing ATP is maximized is a useful therapeutic
intervention in various manifestations of ischemic
heart disease (see sect. VI).

The consequences of myocardial ischemia are nu-
merous, and metabolic perturbations with regard to the
availability of circulating energy substrates, as well as the
regulation of energy substrate metabolism, specifically
fatty acids and fatty acid �-oxidation, are important fac-
tors underlying some of these consequences. Important
factors regulating fatty acid �-oxidation include the con-
centration of circulating plasma FFAs and the intracellu-
lar content of malonyl CoA, which itself is primarily reg-
ulated by the AMPK-ACC-MCD axis (142, 653, 654) (see
sect. IIE).
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A. Ischemia-Induced Alterations in Plasma FFA

Concentrations

The concentration of circulating FFAs is influenced by
a variety of factors such as prandial and hormonal state.
Fasting increases circulating plasma FFA concentrations,
whereas there is a decrease in circulating plasma FFA
concentrations in the postprandial state due to the antili-
polytic effects of insulin (496, 497). Ischemia rapidly in-
creases catecholamine discharge, be it in response to
myocardial ischemia arising from underlying pathophysi-
ological alterations or in response to elective ischemia
employed in cardiac surgical procedures. Plasma norepi-
nephrine concentrations increase within minutes and can
remain elevated for periods of up to 20 h (419) depending
on the severity of the ischemic insult and ensuing stress
response. This elevates circulating plasma FFA concen-
trations by promoting adipose tissue lipolysis (315) and
suppresses pancreatic insulin secretion and peripheral
insulin sensitivity (94, 338, 520). Furthermore, elevated
plasma concentrations of hydrocortisone accompany the
stress of ischemia, having permissive effects on adipose
tissue lipolysis and blunting insulin sensitivity (518). An
increase in circulating plasma FFAs during and after isch-
emia thus increases the delivery of fatty acids to the
myocardium and can alter fatty acid utilization during
both the ischemic and postischemic period.

B. Ischemia-Induced Alterations in Fatty Acid

�-Oxidation

The primary effect of ischemia is a lack of oxygen
and nutrient supply and decreased clearance of metabolic
by-products from the affected region(s) of the myocar-
dium (427). When considering the myocardial effects of
fatty acids during and following ischemia, it is important
to recognize that fatty acids can have differing effects
depending on whether the myocardium is hypoxia or
ischemic. The obligate requirement for oxygen in the
process of oxidative phosphorylation results in a rapid
decrease in ATP production from the catabolism of fatty
acids and pyruvate in proportion to the degree of isch-
emia. However, fatty acid �-oxidation remains a major
source of residual oxidative metabolism (166, 343, 350,
682) with no increase in the relative contribution of car-
bohydrate oxidation (400, 461). There is a rapid acceler-
ation in the conversion of pyruvate to lactate via lactate
dehydrogenase and the regeneration of NAD� from
NADH in an effort to maintain anaerobic glycolysis. Al-
though glycolysis can provide a limited amount of ATP
during ischemia, the hydrolysis of glycolytically derived
ATP in the absence of subsequent pyruvate oxidation
leads to an accumulation of lactate and H� (122, 519),
which can further aggravate ionic disturbances brought

about by ischemia. Thus, during ischemia, when glycoly-
sis is accelerated, a greater proportion of ATP hydrolysis
must be diverted towards performing chemical work (re-
establishing ionic homeostasis). It should be noted that
accumulation of lactate and H� is less of an issue if the
cardiac myocyte is exposed to hypoxia or a very mild
ischemia, as opposed to a severe ischemia, since these
by-products of glycolysis are rapidly removed from the
cardiac myocyte. Thus, while high levels of fatty acid can
aggravate lactate and H� production during and after
severe ischemia, there is little evidence to support a det-
rimental effect of high fatty acid levels in hearts exposed
to hypoxia or very mild ischemia.

With total ischemia there is an accumulation of re-
ducing equivalents in the form of NADH and FADH2 (427).
Both the acyl CoA dehydrogenase and 3-hydroxyacyl CoA
dehydrogenase enzyme reactions of fatty acid �-oxidation
are sensitive to the redox state of the matrix (NAD�/
NADH and FAD/FADH2 ratios)(428). The inhibition of
fatty acid �-oxidation secondary to the accumulation of
reducing equivalents can result in the accumulation
of fatty acid intermediates in distinct cellular compart-
ments. Fatty acyl carnitine species can accumulate in
both the mitochondrial matrix and cytosol, whereas fatty
acyl CoA species accumulate primarily in the mitochon-
drial matrix as this pool of CoA does not exchange with
the relatively small cytosolic CoA pool (255). The accu-
mulation of these acyl carnitine and acyl CoA esters pro-
motes disruption of mitochondrial cristae and the forma-
tion of amorphous intramitochondrial densities, changes
that may ultimately disrupt mitochondrial function (267).

C. Ischemia-Induced Alterations in the Subcellular

Control of Fatty Acid �-Oxidation and Fatty

Acid �-Oxidation in the Postischemic Period

Alterations in the subcellular control of fatty acid
�-oxidation also contribute to changes in myocardial fatty
acid metabolism brought about by ischemia (654). Myo-
cardial ischemia is accompanied by the rapid activation of
AMPK, and the subsequent phosphorylation and inhibi-
tion of ACC (312, 313). These former changes coupled
with the relative maintenance or increase in the activity of
MCD results in a decrease in myocardial malonyl CoA
content during no-flow ischemia in ex vivo rat hearts
(312), but not in vivo in pigs subjected to low flow isch-
emia (604) or ischemia caused by simultaneous flow con-
striction and dobutamine infusion (608). A reduction in
malonyl CoA content relieves the inhibition of CPT 1,
allowing fatty acid �-oxidation to increase by virtue of the
increased entry of fatty acyl CoA moieties into the mito-
chondrial matrix. These effects contribute to the contin-
ued contribution of fatty acid �-oxidation to residual ox-
idative ATP generation during myocardial ischemia (166,
682).
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The activation of AMPK persists during reperfusion
following ischemia and is associated with the changes in
ACC and MCD activity described above, resulting there-
fore in a marked decrease in myocardial malonyl CoA
content (312). Thus, during reperfusion, the rates of fatty
acid �-oxidation recover rapidly to preischemic values at
the expense of glucose oxidation, while contractile func-
tion remains depressed (401, 633). This results in a greater
contribution of fatty acid �-oxidation to oxidative ATP
production during reperfusion following ischemia. How-
ever, the recovery of fatty acid �-oxidation at the expense
of glucose oxidation contributes to an uncoupling of glu-
cose metabolism, where glycolysis is disproportionately
greater than subsequent pyruvate oxidation, thus aggra-
vating intracellular acidosis, and impairing the recovery
of cardiac function and efficiency despite the restoration
of coronary flow (348).

The marked decrease in ATP production during isch-
emia leads to the inhibition of the Na�-K�-ATPase which
is responsible for the extrusion of three Na� in exchange
for 2 K� and is crucial in regulating resting membrane
potential (42). Impaired function of the Na�-K�-ATPase
thus results in intracellular Na� overload. Impaired activ-
ity of the sarcoplasmic Ca2�-ATPase, which is responsible
for the reuptake of Ca2� following myocyte contraction,
contributes to Ca2� overload. As Ca2� is required for
cardiac muscle contraction, it is a major determinant of
the pathophysiology of ischemic and postischemic con-
tractile dysfunction, via mechanisms involving decreased
responsiveness of the contractile proteins to activator
Ca2� (49). Intracellular acidosis itself impairs the re-
sponse of the contractile filaments to Ca2�, thereby con-
tributing to the impaired recovery of function during
reperfusion. The increased contribution of fatty acid �-ox-
idation to myocardial energy requirements again at the
expense of pyruvate oxidation during reperfusion, in con-
junction with the alterations in ionic homeostasis occur-
ring during ischemia, prime the myocardium for further
injury. The normalization of extracellular pH during the
postischemic period produces a large pH gradient across the
sarcolemmal membrane promoting Na�-H� exchange, and
further aggravating intracellular Na� overload. This in turn
promotes reverse mode Na�-Ca2� exchange (31), and the
sequelae of events associated with intracellular Ca2� over-
load, including contracture, mitochondrial dysfunction, the
activation of Ca2�-dependent proteases, and cardiac myo-
cyte cell death culminating in the impaired recovery of car-
diac function and efficiency.

VI. TARGETING FATTY ACID METABOLISM AS

A THERAPEUTIC INTERVENTION FOR

HEART DISEASE

The modulation of myocardial energy substrate me-
tabolism, particularly shifting energy substrate preference

from the use of fatty acids towards the use of glucose as
an oxidative fuel, is a novel therapeutic intervention to
enhance the preservation of mechanical function and ef-
ficiency in various forms of ischemic heart disease and
heart failure. Pharmacological agents that inhibit fatty
acid �-oxidation and favor the use of glucose as an oxi-
dative fuel have recently received considerable attention
(97, 137, 139, 265, 320, 333, 357, 403, 602, 609, 647, 652,
702). Altering the balance between fatty acid and glu-
cose use can be elicited through the use of pharmaco-
logical agents that act at a variety of levels on the
pathways of fatty acid and glucose metabolism and, as
such, alter the balance and contribution of these path-
ways to cardiac energetics and function by increasing
the efficiency of both ATP generation and utilization.
With regard to fatty acid metabolism, such effects can
be obtained by altering the availability of circulating
substrates, mitochondrial uptake of fatty-acyl CoAs, as
well as through altering the process of fatty acid �-ox-
idation, either directly or indirectly via the stimulation
of pyruvate oxidation (see Fig. 7).

A. Therapies Targeting the Availability of

Circulating Energy Substrates

1. Glucose-insulin-potassium

The beneficial effects of glucose-insulin-potassium
(GIK) on myocardial energy substrate metabolism that
underlie cardioprotection were originally proposed as a
stimulation of glucose disposal via glycolysis and a reduc-
tion in circulating FFA concentrations with a resultant
decrease in myocardial fatty acid �-oxidation (453, 597).
Experimental studies utilizing models of myocardial in-
farction have indeed demonstrated that infusion of GIK
solutions can maintain circulating plasma glucose con-
centrations, while suppressing circulating FFA concentra-
tions (271). These alterations in the concentrations of
circulating substrates induce a shift in myocardial metab-
olism from the utilization of fatty acids to the utilization of
glucose as an energy substrate, effects that decrease the
release of both lactate dehydrogenase and creatine ki-
nase, as well as decreasing infarct size and improving the
recovery of postischemic cardiac function (271, 719). In-
terestingly, these cardioprotective effects are not defini-
tive as experimental studies also demonstrate a lack of
infarct size reduction in response to GIK treatment (300).
This may be related to the complex effects of GIK on
myocardial energy metabolism, specifically its ability to
disproportionately stimulate glycolysis to a greater extent
than glucose oxidation (i.e., pyruvate oxidation) and,
hence, accelerate the rate of myocardial H� production
from uncoupled glucose metabolism (164).

Increased glucose load itself results in hyperglyce-
mia, which may attenuate or obscure the protective ef-
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fects of administered insulin. Hyperglycemia can contrib-
ute to augmented ischemic damage by increasing cardiac
myocyte apoptosis (384, 582, 614) and oxidative stress
(411, 412). Furthermore, hyperglycemia exerts proinflam-
matory (385) and prothrombotic effects including platelet
hyperreactivity and elevated plasminogen activator inhib-
itor-1 (a negative regulator of fibrinolysis) levels (463), in
addition to impairing microcirculatory function (258).
Taken together, these unwanted effects of hyperglycemia
may be especially harmful in the clinical setting of acute
myocardial infarction and outweigh the favorable effects
of reducing circulating FFA concentrations. Therefore,

the differences in clinical outcomes with GIK may thus be
impacted upon by the differing doses employed, the tim-
ing of GIK administration, the patient population studied,
as well as the possible detrimental effects of hyperglyce-
mia. However, there are important differential effects
with regard to increasing glucose uptake versus glucose
oxidation. As we discussed in section IIK, the proportion
of glycolytic pyruvate being oxidized, and the subsequent
intracellular acidosis that follows, may actually be more
important with regard to functional outcome, rather than
simply increasing glycolytic ATP production. Thus further
studies investigating the ability of GIK to alter myocardial
fatty acid �-oxidation rates to limit and/or ameliorate
ischemic injury are needed.

The above effects of targeting myocardial energy
metabolism with GIK are also transferred to the clinical
setting, where there remains a lack of a clear consensus
regarding the beneficial, neutral, and/or deleterious ef-
fects of GIK in myocardial ischemia. Meta-analysis of GIK
treatment in the prethrombolytic era demonstrate its abil-
ity to reduce mortality associated with myocardial in-
farction (153), as do clinical trials carried out in the
thrombolytic era including the Diabetic Patients with
Acute Myocardial Infarction (DIGAMI) study (382), the
Estudios Cardiologicos Latinoamerica (ECLA) Collab-
orative Group study (128), and the Dutch Glucose-
Insulin-Potassium Study 1 (GIPS 1). However, the Polish
(Pol) GIK trial did not demonstrate any reduction in car-
diovascular mortality with GIK (658), whereas the Dutch
GIPS 2 study had to be stopped early due to a potentially
higher mortality in the GIK group (639). Recently, the
combined analysis of the use of GIK in the Organization
for the Assessment of Strategies for Ischemic Syn-
dromes-6 (OASIS-6) and ECLA trials for S-T segment ele-
vation myocardial infarction (STEMI) failed to demon-
strate any reduction in mortality, while actually demon-
strating increased mortality following early (within 2–4 h
of symptom onset) treatment, likely owing to increased
glucose, potassium, and fluid load (127). The differences
in clinical outcomes with GIK may thus be impacted upon
by the differing doses employed, the timing of GIK admin-
istration, as well as the patient population studied. Thus
further studies investigating the ability of GIK to alter
myocardial fatty acid �-oxidation to limit and/or amelio-
rate ischemic injury are needed.

2. PPAR ligands

PPARs are members of the ligand-activated nuclear
hormone receptor superfamily and exert major influences
on lipid metabolism specifically by regulating the balance
between fatty acid �-oxidation and fatty acid storage
through regulating the expression of enzymes involved in
fatty acid �-oxidation and lipogenesis (596). Three dis-
tinct PPAR isoforms (PPAR�, PPAR�, PPAR�/�) have

FIG. 7. Targeting fatty acid metabolism as a treatment for ischemic
heart disease. Fatty acid metabolism can be targeted at numerous levels
for the treatment of ischemic heart disease. Specifically, there are a
number of compounds that decrease the circulating availability of fatty
acids (1), protein-mediated uptake of fatty acids (2), mitochondrial
uptake of fatty acids (3), and fatty acid �-oxidation directly (4) and
indirectly (5). Specifics pertaining to each compound are described in
the text.
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been identified in mammals with differing tissue distribu-
tions.

A) PPAR� LIGANDS. PPAR� is predominantly expressed
in tissues with a high capacity for fatty acid �-oxidation,
including heart, skeletal muscle, and liver (189, 596), and
represents the molecular target of antihyperlipidemic fi-
brates such as gemfibrozil, clofibrate, and fenobibrate.
Fibrates can increase the expression and activity of ex-
tracardiac FACS (561), an effect that may contribute to
the ability of these drugs to increase the fatty acid binding
capacity of cytosolic proteins in liver and kidney (474).
Interestingly, fibrates decrease the fatty acid binding ca-
pacity of cardiac cytosolic proteins (474). Furthermore,
these drugs also increase the hepatic expression of en-
zymes of fatty acid �-oxidation (108). In combination,
these effects increase extracardiac fatty acid �-oxidation
and decrease circulating FFA concentrations, thereby de-
creasing the level of FFA to which the heart is exposed,
ultimately decreasing myocardial fatty acid �-oxidation.
Experimental studies have demonstrated the cardiopro-
tective effects of fibrates, specifically a reduction in in-
farct size (678), and an improved recovery of postisch-
emic cardiac function (486). Interestingly, a recent report
demonstrates that PPAR� agonist (GW7467)-mediated
cardioprotection in vivo is associated with an increase in
fatty acid �-oxidation following coronary artery occlusion
and subsequent reperfusion, despite a marked reduction
in circulating FFA concentrations in the postischemic
period (715). Furthermore, the cardioprotective effects of
GW7467 were abolished in PPAR�-null mice. The ob-
served increase in fatty acid �-oxidation may have been
manifest as a result of the improved recovery of postisch-
emic function, and thus greater cardiac energy demand,
while the loss of GW7467-mediated cardioprotection in
PPAR�-null mice may be attributed to an inability of the
PPAR� agonist to increase extracardiac fatty acid utiliza-
tion, and thereby limit the concentration of circulating
FFA to which the myocardium is exposed.

B) PPAR� LIGANDS. PPAR� is predominantly expressed in
adipose tissue, and only low levels are detectable in both
skeletal and cardiac muscle. It also represents the molecular
target of the antidiabetic thiazolidinedione drugs (i.e., pio-
glitazone, troglitazone, rosiglitiazone). Thiazolidinediones
prevent the ectopic deposition of lipid in nonadipose tissues
not suited for excess lipid storage and, as such, can promote
adiposity by increasing the sequestration of lipids in adipose
tissue itself. Experimental studies indicate that thiazo-
lidinediones decrease circulating plasma TAG (714) and
FFA concentrations (714, 726) while promoting myocardial
glucose and lactate uptake, and glucose oxidation (590, 714,
726). These alterations in myocardial energy substrate avail-
ability and metabolism improve the recovery of postisch-
emic cardiac function (714, 716, 726).

Despite the ability of thiozolidinediones to induce the
potentially beneficial shifts in myocardial energy sub-

strate metabolism described above, their use in clinical
scenarios where inducing such a shift in energy metabo-
lism may be desirable is not without concern. Impor-
tantly, thiazolidinediones have the undesirable effect of
increasing fluid retention and aggravating peripheral
edema in diabetic heart failure patients due to their vaso-
dilatory effects (344). Recent meta-analyses also demon-
strate that the use of thiazolidinediones increases the risk
of myocardial infarction and death from cardiovascular
causes in type 2 diabetes mellitus patients (344, 436). The
mechanisms underlying the increased risk of myocardial
infarction associated with the use of thiazolidinediones
remain unresolved, however, may be related to adverse
alterations in circulating lipoprotein profile, specifically
an increase in low-density lipoprotein (LDL) concentra-
tion as well as increase in intravascular volume which has
the potential to elicit myocardial ischemia by increasing
oxygen demand in susceptible individuals (436). Further-
more, PPAR� agonists can decrease the expression of
vascular endothelial growth factor (VEGF) receptor 1 and
VEGF 2 expression and endothelial tube formation in
vitro, as well as inhibiting VEGF-induced angiogenesis in
vivo (rat cornea) (699). Whether these effects are trans-
ferable to the coronary circulation is not known; none-
theless, these effects do have the potential to decrease the
formation of collateral vessels in the setting of ischemia
heart disease and may therefore contribute to the in-
creased risk of myocardial infarction. Thus the use of
thiazolidinediones to alter myocardial energy substrate
metabolism in any cardiovascular disease state warrants
further study and assessment of safety.

C) PPAR�/� LIGANDS. PPAR�/� is the predominant PPAR
isoform expressed in skeletal muscle, as well as white and
brown (in rodents) adipose tissue (377); however, it is not
as well characterized as either PPAR� or PPAR�. None-
theless, experimental studies implicate PPAR�/� in the
regulation of both skeletal muscle and adipose tissue fatty
acid metabolism. The activation of PPAR�/� increases
skeletal muscle and adipose tissue fatty acid �-oxidation
(632, 674), and by increasing extracardiac fatty acid me-
tabolism, may decrease the plasma fatty acid concentra-
tions to which the heart is exposed and confer cardiopro-
tection following ischemia.

3. Nicotinic acid

Nicotinic acid is a broad-spectrum antiatherogenic
compound that decreases circulating VLDL and LDL lev-
els, while increasing high-density lipoprotein (HDL) lev-
els. The beneficial effects of nicotinic acid in the treat-
ment of ischemic heart disease are primarily attributed to
its antiatherogenic properties including decreased athero-
sclerotic lesion progression and increased lesion regres-
sion (71, 398). However, nicotinic acid can also alter
energy metabolism. Following dosing, nicotinic acid is
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uniquely distributed to adipose tissue, likely owing to the
expression of a specific high-affinity G protein-coupled
receptor (641). Nicotinic acid inhibits adipose tissue lipol-
ysis and thus decreases circulating FFA concentrations to
ultimately decrease myocardial fatty acid �-oxidation. In
human studies, nicotinic acid increases the cardiac respi-
ratory quotient, in the absence of alterations in the oxy-
gen extraction ratio, effects consistent with a shift in
myocardial energy substrate metabolism from fatty acid
�-oxidation towards carbohydrate oxidation (72, 328).
These effects on myocardial energy substrate metabolism
likely contribute to the anti-ischemic effects of nicotinic
acid.

4. �-Adrenoceptor antagonists

�-Adrenoceptor antagonists are proposed to exert
their anti-ischemic effects via oxygen sparing attributed
to both negative inotropic and negative chronotropic ef-
fects. Presumably, by reducing neuro hormonal activation,
�-adrenoceptor antagonists could reduce catecholamine-
induced lipolysis and therefore decrease circulating
plasma FFA concentrations. �-Adrenoceptor antagonists
decrease the mobilization of FFA from adipose tissue
(154) and can lower plasma FFA concentrations (58, 433).
Furthermore, increased sympathetic activity, reflected by
increased circulating concentrations of catecholamines
and FFAs, is reduced by the �-adrenoceptor antagonist
propranolol during the course of myocardial infarction
(419). These effects may decrease the availability of cir-
culating FFAs for myocardial fatty acid �-oxidation. In-
deed, two small clinical studies suggest �-adrenoceptor
antagonists can decrease fatty acid uptake and oxidation
(256, 671), while increasing LV function in the absence of
increased oxygen utilization (147, 148). These changes are
consistent with increased myocardial carbohydrate me-
tabolism and increased cardiac efficiency.

B. Therapies Targeting Sarcolemmal Fatty

Acid Uptake

Sulfo-N-succinimidyl esters of long-chain fatty acids
including sulfo-N-succinimidyl-palmitate (SSP) and sulfo-
N-succinimidyl-oleate (SSO) are described as inhibitors of
FAT/CD36 and can inhibit CPT 1 (65) and, hence, protein-
mediated sarcolemmal and mitochondrial fatty acid up-
take (111). Studies carried out in cardiac myocytes and
cardiac giant membrane vesicle preparations demon-
strate that these compounds can decrease long-chain
fatty acid uptake (374, 375). Furthermore, the compound
SSP decreases palmitate uptake in isolated rat hearts
(631). Although functional studies using these inhibitors
in experimental models of myocardial ischemia-reperfu-
sion are lacking, inhibition of CD36 via genetic ablation
results in a compensatory increase in myocardial glucose

oxidation during postischemic reperfusion (311), attenu-
ates age-related increases in intramyocardial TAG, while
improving mitochondrial ATP production and enhancing
cardiac function (303). Taken together, these findings
may suggest that inhibiting myocardial fatty acid uptake
may be a viable approach to treat various cardiac patho-
physiological states.

C. Therapies Targeting Mitochondrial Fatty

Acid Uptake

CPT 1 is a rate-controlling enzyme mediating the
mitochondrial uptake of fatty acids. Therefore, pharma-
cological agents that inhibit CPT 1 can elicit anti-ischemic
effects via the modulation of myocardial fatty acid metab-
olism. Several CPT 1 inhibitors have been developed for
this purpose and include the compounds perhexeline,
etomoxir, and oxfenecine. Several experimental studies
demonstrate that the anti-ischemic effects of these com-
pounds are attributed to an increase in myocardial glu-
cose oxidation, elicited at the expense of fatty acid �-ox-
idation (266, 287, 366, 369, 408, 652). Of these CPT 1
inhibitors, perhexeline has received the most attention.

1. Etomoxir

Etomoxir {2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carbox-
ylate} is an irreversible inhibitor of CPT that was originally
designed as an antidiabetic agent (500), which can also
alter the balance between myocardial fatty acid �-oxida-
tion and glucose oxidation, such that glucose oxidation is
favored. In experimental models of ischemia and reperfu-
sion, etomoxir improves the recovery of ventricular func-
tion following ischemia (364, 366, 369). This cardiopro-
tective effect is also afforded to the postischemic diabetic
heart (559, 669) and may suggest the possible clinical
utility of etomoxir in patients with diabetic cardiomyop-
athy. The protective effects of etomoxir in the postisch-
emic period are accompanied by increased rates of myo-
cardial glucose oxidation and an increased production
and utilization of ATP for contractile work due to the
stimulation of the cardiac pyruvate dehydrogenase com-
plex (via the Randle cycle) (59, 364, 366, 369).

Although clinical experience with etomoxir is very
limited, its potential beneficial effects on heart function
have been assessed in a small (15 patients) uncontrolled,
open-label study of patients with NYHA class II heart
failure (558). Following 3 mo of etomoxir treatment (80
mg), there was an improvement in LV ejection fraction,
cardiac output at peak exercise, and clinical status (558);
however, this trial was not able to assess the long-term
safety of etomoxir treatment. The more recent, etomoxir
for the recovery of glucose oxidation (ERGO) study had
to be stopped early as several patients with NYHA class
II-class III heart failure in the treatment group were found
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to have elevated liver transaminase enzyme levels (240).
This adverse effect may be related to the irreversible
inhibition of CPT 1 in response to etomoxir, an effect that
may allow toxicity to manifest from its excessive accu-
mulation. This study did not detect any significant im-
provement in the etomoxir group (40 and 80 mg) com-
pared with placebo (likely due to limited power); how-
ever, there was a trend to increased exercise time.

2. Perhexeline

Perhexeline was frequently prescribed as an anti-
ischemic agent for the treatment of angina in the 1970s;
however, its use declined in the 1980s due to adverse
effects including hepatic toxicity (steatosis and necrosis)
and peripheral neuropathy (334), attributed to the accu-
mulation of phospholipids likely occurring secondary to
the inhibition of CPT 1 (23). Of importance is the fact that
the hepatic toxicity of perhexeline is due to the inhibition
of the hepatic isoform of CPT 1 (125). In vitro studies
clearly demonstrate that the cardiac isoform of CPT 1 is
more sensitive to inhibition by perhexeline (288), an ef-
fect that allows for the use of dose titration to avoid or
limit adverse effects. Maintaining plasma perhexeline
concentration within the therapeutic range of 150–600
�g/l preserves its anti-ischemic effects, while minimizing
its adverse effects (104). Several clinical trials have dem-
onstrated the beneficial effects of perhexeline in aortic
stenosis, heart failure, and angina pectoris (104, 333, 650).
Thus the inhibition of CPT 1 and the resultant decrease of
fatty acid �-oxidation is an effective therapeutic strategy
that can be exploited in various manifestations of isch-
emic heart disease.

3. Malonyl CoA decarboxylase inhibitors

Selective MCD inhibitors using human recombinant
MBP fusion MCD protein have been screened and opti-
mized to inhibit MCD from both rat and swine heart to
similar extents (137). These compounds are effective at
increasing myocardial malonyl CoA content and stimulat-
ing myocardial glucose oxidation secondary to an inhibi-
tion CPT 1 (137, 513, 608). The MCD inhibitor CBM-
301106 elevates myocardial malonyl CoA content during
demand-induced ischemia in the swine heart, an effect
associated with reduced fatty acid �-oxidation, increased
glucose oxidation, and a decrease in lactate release (608).
The ability of MCD inhibitors (CBM-300864) to elicit the
aforementioned effects is also preserved in experimental
models of severe, global ischemia-reperfusion, where
these compounds stimulate glucose oxidation and en-
hance the recovery of LV function during the postisch-
emic period (137). The cardioprotective effects of MCD
inhibition following ischemia have furthermore been cor-
roborated via the generation of MCD-deficient mice, sug-
gesting that the inhibition of malonyl CoA may be a

therapeutically relevant option in the treatment of isch-
emic heart disease (139).

D. Therapies Partially Inhibiting Mitochondrial

Fatty Acid �-Oxidation

1. Trimetazidine

3-KAT, the terminal enzyme of fatty acid �-oxidation,
is recognized as a therapeutic target in the treatment of
ischemic heart disease. Trimetazidine is a partial fatty
acid �-oxidation inhibitor that competitively inhibits long-
chain 3-KAT (281, 357), as demonstrated by the ability of
increasing concentrations of the 3-KAT substrate 3-keto-
hexadecanoyl-CoA to surmount inhibition (357). Trimeta-
zidine is clinically utilized as an antianginal therapy
throughout Europe and in over 90 countries (467). By
inhibiting fatty acid �-oxidation, trimetazidine causes a
reciprocal increase in glucose oxidation (281, 357),
thereby decreasing the production of H� arising from
glycolysis uncoupled from glucose oxidation. Interest-
ingly, in the setting of pressure-overload cardiac hyper-
trophy, where the rates of fatty acid �-oxidation are de-
pressed, trimetazidine confers cardioprotection indepen-
dently of alterations in fatty acid �-oxidation (542).
Rather, trimetazidine attenuates the elevated rates of gly-
colysis and increases glucose oxidation to limit the pro-
duction of H� attributed to glucose metabolism. The in-
hibition of glycolysis coupled with the increase in glucose
oxidation, or the partial inhibition of fatty acid �-oxida-
tion and the parallel stimulation of glucose oxidation, can
limit ischemia-induced disturbances in myocardial ionic
homeostasis. Specifically, the improved coupling of glu-
cose metabolism attenuates intracellular acidosis as well
as Na� and Ca2� overload (510) during ischemia and
subsequent reperfusion (98, 510) and improves the recov-
ery of postischemic cardiac function (413). Trimetazidine
also exerts favorable effects on cardiac myocyte Ca2�

handling that can limit ischemic myocardial injury, includ-
ing reductions in Ca2� current (297), prevention of ele-
vated [Ca2�]i, and preservation of SR Ca2�-ATPase activ-
ity (402) that may limit or prevent cytosolic Ca2� over-
load. Therefore, the metabolic effects of trimetazidine are
permissive to increasing cardiac efficiency by sparing
ATP hydrolysis from being utilized to correct ionic ho-
meostasis, and making it available to fuel contractile
work.

The effects of trimetazidine in experimental studies
can be extrapolated to the clinical setting, where the drug
is efficacious in the treatment of angina, myocardial in-
farction, and heart failure (265). The anti-ischemic effects
of trimetazidine in the treatment of angina include an
increased time to 1-mm S-T segment depression and de-
creased weekly nitrate consumption (97). In the setting of
acute myocardial infarction, the cardioprotective effects
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of trimetazidine are evident as a reduction in reperfusion
arrhythmias and a more rapid resolution of S-T segment
elevation (465, 610). The addition of trimetazidine to treat-
ment regimens also improves NYHA functional class, LV
end-diastolic volume, and ejection fraction in individuals
with heart failure and ischemic cardiomyopathy (170,
171), as well as idiopathic dilated cardiomyopathy (647).
Thus the partial inhibition of fatty acid �-oxidation, via
the reversible, competitive inhibition of 3-KAT, at least in
part, attenuates several consequences of various forms of
ischemic heart disease.

2. Ranolazine

Ranolazine is an antiangina drug approved in the
United States for the treatment of chronic stable angina
(567). It has been shown to suppress fatty acid �-oxida-
tion in rat cardiac and skeletal muscle and result in a
reciprocal increase in glucose oxidation (388, 389), which
has been associated with indirect activation of PDH (100,
101). While there is no direct evidence for this mechanism
in patients, subgroup analysis of a placebo-controlled
clinical trial with ranolazine showed a significant reduc-
tion in glycosylated hemoglobin A1c that was similar to
that observed with approved antidiabetic drugs (77), con-
sistent with accelerated systemic glucose clearance sec-
ondary to effects on muscle metabolism. In experimental
studies, ranolazine preserves mitochondrial structure, de-
creases tissue Ca2� content, and decreases postischemic
ventricular fibrillation (200, 201). Ranolazine also attenu-
ates myocardial stunning and reduces infarct size (211,
212). These effects may be explained by a shift in myo-
cardial energy metabolism from fatty acid �-oxidation
towards glucose oxidation, which can increase ATP gen-
eration at any given level of oxygen consumption, and/or
a sparing of ATP from correcting ionic homeostasis and
thus driving contractile function (100, 101, 389). In a
canine model of heart failure, acute treatment with rano-
lazine increases cardiac ejection fraction, stroke volume,
and mechanical efficiency in the absence of increased
oxygen consumption (81, 535), and 3 mo of treatment
prevents progressive LV remodeling and contractile dys-
function (499). Interestingly, ranolazine-induced cardio-
protection has also been demonstrated to be dissociated
from alterations in fatty acid �-oxidation (672), thereby
suggesting additional/alternative mechanisms for ranola-
zine-induced cardioprotection. Recent reports implicate
the ability of ranolazine to directly inhibit the late Na�

current and prevent adverse increases diastolic [Ca]i via
Na�-dependent Ca2� overload in limiting ischemic myo-
cardial injury (174, 600).

In the clinical setting, ranolazine is an effective anti-
ischemic agent in the treatment of angina pectoris, where,
when utilized as monotherapy, or added to standard an-
tianginal regimens, it increases time to 1-mm S-T segment

depression and reduces the number of weekly angina
attacks, and hence weekly nitroglycerin consumption (78,
79, 528, 612). These effects of ranolazine also extend to
diabetic patients (640). Clinical trials also demonstrate
the ability of ranolazine to decrease the incidence of
ventricular tachycardia, supraventricular tachycardia,
and ventricular pauses (418, 568). These antiarrhythmic
effects likely arise from the ability of ranolazine to inhibit
the late Na� current (36). The anti-ischemic and antiar-
rhythmic effects of ranolazine are not mutually exclusive,
as they occur at similar concentrations.

E. Therapies Overcoming Fatty Acid-Induced

Inhibition of Glucose Oxidation

1. Dichloroacetate

Dichloroacetate also promotes myocardial glucose
oxidation at the expense of myocardial fatty acid �-oxi-
dation; however, unlike trimetazidine and ranolazine, di-
chloroacetate stimulates the mitochondrial pyruvate de-
hydrogenase complex by directly inhibiting the activity of
pyruvate dehydrogenase kinase. Experimental studies
have demonstrated the ability of dichloroacetate to en-
hance the postischemic recovery of cardiac function in
vitro as well as in vivo (257, 401, 604). An increase in
cardiac efficiency, and an improved coupling between
glycolysis and glucose oxidation, accompany the cardio-
protective effects of dichloroacetate (347, 348). Clinical
experience with dichloroacetate is limited; however, in a
small clinical trial, dichloroacetate increased LV stroke
volume and myocardial efficiency, effects accompanied
by increased lactate utilization (675). As the metabolic
effects of dichloroacetate are similar to trimetazidine and
ranolazine, it may be relevant in the therapeutic manage-
ment of angina pectoris; however, its anti-ischemic effi-
cacy has yet to be assessed in such a setting.

VII. SUMMARY

Cardiac fatty acid �-oxidation is a dynamic process
that can quickly increase or decrease to adapt to alter-
ations in cardiac energy demand or changing environ-
ment. Although there exists a lot of controversy with
regard to fatty acid �-oxidation rates and the accumula-
tion of intramyocardial lipid, recent evidence has impli-
cated high cardiac fatty acid �-oxidation rates in obesity
or diabetes as being an important contributor to the de-
velopment of cardiomyopathies. Alterations in fatty acid
�-oxidation also have important implications on cardiac
function in both heart failure and ischemic heart disease.
Of importance is that emerging evidence suggests that
inhibition of fatty acid �-oxidation may be a useful ap-
proach to improve heart function in the setting of obesity,
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diabetes, heart failure, and ischemic heart disease. Future
animal studies should look to combine these various dis-
ease models (i.e., DIO and heart failure), as opposed to
studying them in isolation, due to the fact that our obese,
diabetic, and cardiovascular disease patient populations
often encompass the same individuals.
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