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Background: Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the
effects on sensory functioning.
Methods: Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term
9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood
was analyzed by gas chromatography–mass spectrometry for levels of 20 common pesticides. The ABR
forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed
by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a
function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature
auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associa-
tions between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic
effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split).
Results: Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range
0–9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides
detected in cord blood for the 64 ms and non-masker conditions. A similar pattern seen for CCT from the 8 ms
and 16 ms conditions, although statistical significance was not reached. Increased pesticide exposure was
associated with longer latency. The relation between number of pesticides detected in cord blood and CCT
depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood
ferritin group but not the higher cord blood ferritin group.
Conclusions: ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired
neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal
pesticide exposure on ABR latency delay, suggesting an additive or multiplicative effect.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Billions of pounds of synthetic pesticides are applied globally each
year for crop protection and pest management in agricultural and
residential settings (Burns et al., 2013). The highest usage occurs in
the agricultural sector, with over 4.6 million tons applied each year
(Zhang et al., 2011; EPA, 2011). China is one of the world's largest
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consumers of agricultural pesticides (Zhang et al., 2011; EPA, 2011;
Ding and Bao, 2013), applying 2.5–5 fold more per field unit than the
global average (Zhang et al., 2014). In Zhejiang province, the site of
this study, agricultural applications are some of the highest in China,
at nearly double the national rate (Huang et al., 2001). Due to their
heavy use in agriculture, non-occupational pesticide exposure is most
likely to occur via consumption of contaminated food. Additional expo-
sure may also occur via contaminated drinking water, dust, and spray
drift, especially in rural, farming communities, as well as from the use
of residential pesticides in the home or yard (Huang et al., 2001).

Synthetic pesticides are toxic to biological systems by design. Many
act by disrupting signaling mechanisms in the central nervous system
(CNS) thereby inhibiting neurological function. Evidence from animal
studies and adult occupational poisonings has demonstrated that
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Table 1
Distribution of pesticide concentrations in umbilical cord serum (ng/ml) at delivery,
Zhejiang Province, China 2009 (n = 27).

Pesticide Limit of
detection
(LOD)
(ng/ml)

Number of
infants with
levels N LOD
(%)

Selected percentiles

50 75 90 95 max

Organophosphates
Chlorpyrifos 0.05 5 (19%) ND ND 0.16 0.17 0.17
Diazinon 0.05 2 (7%) ND ND ND 0.45 0.87
Fonofos 0.05 3 (11%) ND ND 0.26 0.56 1.06
Malathion 0.50 5 (19%) ND ND 2.87 2.88 3.06
Parathion-ethyl 0.05 0 (0%) ND ND ND ND ND
Parathion-methyl 0.05 6 (22%) ND ND 1.83 2.14 2.53
Profenofos 0.50 10 (37%) ND 0.68 0.74 0.84 0.96
Terbufos 0.05 7 (26%) ND 0.14 0.34 0.39 0.39

Carbamates
Carbofuranphenol 0.05 9 (33%) ND 20.60 31.22 32.34 46.10
Propoxur 0.05 0 (0%) ND ND ND ND ND

Herbicides
Acetochlor 0.50 5 (19%) ND ND 0.61 0.82 0.99
Alachlor 0.05 8 (30%) ND 0.08 3.26 3.82 5.26
Atrazine 0.25 7 (26%) ND 0.67 1.53 1.68 1.83
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these insecticides act via similar neurotoxic mechanisms in mammals
following high-dose exposure (Abdollahi and Karami-Mohajeri, 2012;
Yang and Deng, 2007). Less is known about the mechanisms of neuro-
toxicity at low-level exposures that are relevant to the general popula-
tion. Low-level pesticide exposures are an important concern in
pregnantwomen and young children. Fetal and infant brains are rapidly
developing, leaving them highly vulnerable to potentially long-lasting
effects of pesticide exposure, such as disruption of brain architecture
or circuitry (Garcia et al., 2005). Adding to concerns for fetal exposure,
pesticides are able to cross the placenta (Bradman et al., 2003) and
fetuses tend to have lower levels of detoxifying enzymes (Eskenazi
et al., 2008), both of which are thought to increase fetal susceptibility.
Low-level pesticide exposures during pregnancy or childhood
have been found to be associated with neurodevelopmental deficits
such as lower IQ (Bouchard et al., 2011; Rauh et al., 2011; Eskenazi
et al., 2007; Engel et al., 2011) and disorders such as autism (Roberts
et al., 2007; Shelton et al., 2014), attention deficit-hyperactivity disorder
(Marks et al., 2010; Bouchard et al., 2010; Rauh et al., 2006), and
pervasive developmental disorder (Eskenazi et al., 2007; Rauh et al.,
2006).

Very little is known about the effects of early-life pesticide exposure
on the auditory pathways of the brain or other sensory systems. There
have been some reports of hearing loss and ototoxicity following
pesticide exposure, but most of the evidence comes from animal or
occupational case studies where high-level exposures are the norm
(Gatto et al., 2014). One recent study found deficits in cochlear status
in children exposed to organochlorine pesticides (Sisto et al., 2015).
Regarding visual sensory function, a recent study in anArctic population
with high DDE exposure found that both pre- and postnatal DDE
exposure were associated with visual processing impairment at school
age (Cartier et al., 2014).

Auditory system development in infancy helps to provide the
foundation for subsequent communication and language acquisition in
childhood (Chonchaiya et al., 2013; Algarin et al., 2003). Therefore,
early life deficits in auditory function, potentially as a result of prenatal
pesticide exposure, could contribute to detrimental long-term effects
on learning or other cognitive functions later in childhood
(Chonchaiya et al., 2013; Molfese, 1989; Molfese, 2000; Benasich and
Tallal, 2002).

Nutrient-toxicant interactions are an important area of research
given that concurrent exposure to toxicants and early-life nutrient
deficiencies are common in many parts of the world. Iron is an impor-
tant nutrient for early neurodevelopment (Lozoff, 2007; Georgieff
et al., 2015) and an essential factor in myelination and oligodendrocyte
biology (Badaracco et al., 2010; Todorich et al., 2009). Previous studies
that found longer ABR latencies among iron-deficient infants are consis-
tent with impairedmyelination of the auditory pathways (Algarin et al.,
2003; Roncagliolo et al., 1998). Because iron and pesticides both appear
to have impacts on neurodevelopment andmyelination, it is relevant to
consider them jointly, specifically in regard to auditory system
development.

The principle aim of this pilot study was to explore the effects of
environmental exposures tomultiple pesticides on infant auditory func-
tion at nine months, as measured by auditory brainstem response
(ABR). A secondary aim was to explore the pesticide-iron interaction
as it relates to ABR in infants.
Linuron 0.50 1 (4%) ND ND ND ND 1.10
Metolachlor 0.05 0 (0%) ND ND ND ND ND
Trifluralin 0.05 0 (0%) ND ND ND ND ND

Fungicides
Dicloran 0.05 8 (30%) ND 1.22 7.87 9.06 11.46
Metalaxyl 0.05 0 (0%) ND ND ND ND ND
Vinclozolin 0.05 16 (59%) 0.36 0.60 1.31 1.61 1.85

Repellent
Diethyltoluamide 0.05 20 (74%) 0.29 0.52 0.78 0.98 1.08

ND = non-detectable.
2. Materials and methods

2.1. Ethics statement

Signed written informed consent was obtained from infants'
parents. All study protocols were approved by the Institutional Review
Boards and ethics committees at both the University of Michigan and
Children's Hospital of Zhejiang University.
2.2. Participants

The study populationwas a subset of Chinese infants participating in
a study of early iron deficiency and neurodevelopment jointly conduct-
ed by the University of Michigan and the Children's Hospital of Zhejiang
University. Women/infant pairs meeting the following criteria were in-
vited to participate: singleton full-term birth (37–41 weeks completed
gestation); birthweight N2500 g; no perinatal complications or congen-
ital malformations; no general undernutrition (b10th percentile for
weight or length); no acute or chronic illness; nomultiple or prolonged
hospitalizations (N5 days). Consecutive participants in the study with
due dates between April and June 2009 (n = 116) were included in
this pilot study of pesticide exposure; 27 of the infants had ABR data.

2.3. Cord blood pesticides

Cord blood collection and pesticide analysis methods have been
described elsewhere (Wickerhamet al., 2012). Briefly, a 30mLumbilical
cord blood sample was collected, separated, and serum was stored at
\\80 °C. Serum samples underwent solid-phase extraction and analysis
using isotope dilution gas chromatography–mass spectrometry
(GC–MS) at Nanjing Medical University in Nanjing, China. Pesticides
were selected based on usage data, availability of analytical standards,
method compatibility, and preliminary data. The final list included:
organophosphate insecticides (chlorpyrifos, diazionon, fonofos,
malathion, parathion-ethyl, parathion-methyl, profenofos, terbufos),
carbamate insecticides (carbofuranphenol, propoxur), herbicides
(acetochlor, alachlor, atrazine, linuron, metolachlor, trifluralin),
fungicides (dicloran, metalaxyl, vinclozolin), and repellant
(diethyltoluamide). Pesticide concentrations were analyzed by Thermo
Trace GC and DSQ Mass Spectrometer (Thermo, USA). Limits of detec-
tion (LOD) ranged from 0.05 ng/mL to 0.50 ng/mL (Table 1). Quality
control samples were analyzed in parallel with unknown samples in
each analytical series.



Table 2
Characteristics of the study population.

Variable Sample with ABR
data (n = 27)

Child male, n (%) 15 (55.6%)
Total number of pesticides detected (M and SD) 4.1 (2.3)
Total number of organophosphate pesticides detected
(M and SD)

1.48 (1.16)

Total number of carbamate pesticides detected (M and SD) 0.33 (0.48)
Total number of herbicides detected (M and SD) 0.74 (0.65)
Total number of fungicides detected (M and SD) 0.96 (0.76)
Birth weight (grams, M and SD) 3393 (485)
Gestational age (weeks, M and SD) 39.4 (1.2)
Cord blood ferritin (ng/mL) 162.9 (81.1)
Weight-for-age z-score at 9 month ABR testing (M and SD) 0.73 (0.93)
Age at 9 month ABR testing (months, M and SD) 9.6 (0.5)
Head circumference-for-age z-score at 9 month ABR testing
(M and SD)

0.08 (0.95)

Father smokes, n (%) 15 (55.6%)
Cord blood lead (μg/dL, M and SD) 3.3 (1.3)
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Binary exposure variables (≥LOD = 1, bLOD= 0) were created for
each of the pesticides of interest and summed to determine the total
number of pesticides detected in cord blood; this was our primary inde-
pendent variable. In this sense, we hoped to estimate the additive or
synergistic impact of exposure to multiple pesticides (Rider et al.,
2010; Wickerham et al., 2012). We also calculated the total number of
detected pesticides in the following four categories: organophosphates,
carbamates, herbicides, and fungicides. Given the small sample size of
this pilot study and the relatively high LODs for the pesticides, we felt
this method of exposure classification was most appropriate.

2.4. Auditory brainstem response (ABR) recording

ABR is a highly reliable, noninvasive way of measuring the matura-
tion of the auditory pathway, from the periphery to the brainstem, as
well as overall central nervous system maturation in infants
(Despland andGalambos, 1980; Jacobson, 1985; Song et al., 2011). A se-
ries of clicks are transmitted via ear canal transducers, and electroen-
cephalogram (EEG) electrodes on the scalp record the neural activity
at auditory centers along the brainstem. ABRs typically consist of three
well-defined peaks in infants, corresponding to nerve activation in the
cochlear nerve (wave I), the cochlear nuclei (wave III), and the lateral
lemniscus (wave V) (Hall, 2007; DeBonis and Donohue, 2008). ABR
peak latencies decline throughout infancy, indicating faster signal trans-
mission, as the auditory pathways mature and become increasingly
myelinated.

For this study, ABRs were obtained from nine-month-old infants
during unsedated sleep following an initial test for basic hearing func-
tion (Despland and Galambos, 1980). ABR testing was carried out
using a Biologic Navigator (Bio-Logic Systems Corp., Mundeleiu, IL)/
Traveler evoked potential system. We assessed temporal processing
abilities (rapid acoustic processing) by using a forward masking para-
digm (Mai et al., 2015). The use of the forward-masking paradigm in
this sample is described in detail elsewhere (Chonchaiya et al., 2013).
Briefly, the forward-masking paradigm has been used to investigate
the temporal processing and frequency discrimination of the auditory
system (Chonchaiya et al., 2013; Lasky, 1991; Walton et al., 1999). It
differs from standard ABR because as long as the signal and the masker
are closely spaced (70 ms or less), both signals activate auditory nerve
fibers, and nerve fibers responding to the first stimulus have not
recovered to become available to respond to the second stimulus
(Chonchaiya et al., 2013). The closer the masker is to the stimulus, the
longer it takes for the auditory nerve fibers to recover and become
available to respond (Abbas and Gorga, 1981).

ABR recordings used clicks presented at 80 decibels above normal
adult hearing level (dB nHL) (the signal), which were preceded by an-
other click (the masker) at different time intervals: 8, 16, and 64 milli-
seconds (ms). Each averaged response consisted of 1300 accepted
sweeps, which was then replicated, yielding a waveform representing
2600 responses. The data acquisition program automatically rejected
any traces contaminated by high-amplitude artifacts (voltage exceeding
±23.80 μV). The latency and amplitude values obtained for the right
and left earswere averaged. ABRwaveformswere analyzed for latencies
for component peaks I, III, and V. We focused on wave V latency and
central conduction time (CCT), which is the interpeak latency from
wave I to wave V. These measures have been suggested as useful mea-
sures of auditory processing because they are easily identifiable and re-
producible (Berglund et al., 2011). Wave V is frequently used as an
indicator of the neurological integrity of the auditory system (Hecox
and Galambos, 1974).

2.5. Statistical analysis

Data analysis was conducted with SAS 9.4 (SAS Institute Inc., Cary,
NC). Descriptive statistics, frequencies, and correlations were examined
for variables of interest. To address our primary research question,
linear regression models were used to evaluate associations between
total number of all pesticides detected and ABR outcomes (wave V la-
tencies and CCT at the 8, 16, and 64 ms conditions, as well as the non-
masker condition) at nine months of age. As a secondary analysis, we
then repeated these models while replacing total number of detected
pesticides with total number of detected organophosphates, carba-
mates, herbicides, or fungicides. To examine the dose-response rela-
tionship of pesticides which were detected in N50% of the samples, we
used linear regression models where vinclozolin and diethyltoluamide
predicted ABR outcomes. Samples that fell below the LODwere imputed
as LOD divided by the square root of two. In addition to themain effects
of the primary pesticide exposure variable, we considered an additive or
synergistic effect of poor iron status by stratifying our analysis by new-
born ferritin (based on median split of 146 ng/mL).

We examined bivariate associations between potential covariates
and the various ABR outcomes of interest using t-tests and Pearson cor-
relation coefficients, as well as the bivariate associations between po-
tential covariates and our pesticide exposure index variable. The small
sample size with ABR data in this pilot study limited power to include
covariates in the pesticide-iron interaction analysis. Small sample size
also makes results sensitive to the impact of outliers. One child had
ABR CCT and wave V latency values N2.5 standard deviation units
from the mean. These values were removed before final analysis.

3. Results

The mean number of pesticides detected was 4.1, with a standard
deviation of 2.3 and a range of 0–9. Only one infant had nopesticides de-
tected in cord blood. A full description of the sample is shown in Tables 1
and 2. Child sex was the only background variable that showed consis-
tent statistically significant associationswith the various ABRwave V la-
tencies and CCTs. However, child sex was not statistically significantly
associated with the total number of detected pesticides, eliminating
concern about potential confounding. We therefore did not include
child sex as a covariate in our final models.

Given the small sample size, we closely examined the distributions
of the dependent variables before pursuing linear regression to avoid
violating model assumptions. We used SAS Proc Univariate to display
histograms to allow for visual inspection of data distributions, as well
as to perform tests for normality (Shapiro–Wilk, Kolmogorov–Smirnov,
Cramer–von Mises, Anderson–Darling). All tests indicated that all de-
pendent variableswere normally distributed. Based on linear regression
models of ABR wave V latencies and CCT (Table 3), the total number of
pesticides detectedwas significantly associatedwith thewave V latency
for the 64 ms condition (p = 0.03) and approached statistical signifi-
cance for the non-masker condition (p = 0.05). Interpeak latencies
from wave I to V (CCT) were significantly associated with the total
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number of detected pesticides for the 64 ms and non-masker condition
(p = 0.008 and p = 0.01, respectively). This pattern was also seen for
the 8 ms and 16 ms conditions, although statistical significance was
not reached (p = 0.06 and p = 0.09, respectively). In all models,
increased pesticide exposure was associated with longer latency.

The small sample size was a concern, especially for the 8 ms and
16 ms condition where data availability limited the analytic sample
more than it did for the 64ms and non-masker condition. In our prima-
ry models where total detected pesticides predicted CCT, the beta coef-
ficients were similar in magnitude for all four conditions, yet only
significant for the non-masker and 64 ms conditions (Table 3, first
row). Statistical power to detect the differences found in the 8 ms and
16 ms condition models was 0.35 and 0.25, respectively, leading us to
believe that the lack of significant findings in these models may be
due, at least partially, to the smaller sample size rather than a lack of a
true association.

The results for the secondary models with number of detects in the
four pesticide classes (Table 3) showed only two significant findings;
the number of detected carbamates predicted longer wave V latency
on the 64ms condition and the number of fungicides detected predicted
longer CCT on the 64 ms condition (p = 0.03 for both models).

Results of the dose-response analyses for vinclozolin and
diethyltoluamide are shown in Table 4. There was a statistically
significant linear association between vinclozolin concentration and
wave V and CCT from the 8ms condition. Therewas a statistically signif-
icant association between diethyltoluamide andwave V and CCT for the
16ms and 64ms conditions. In all cases, a higher cord blood concentra-
tion of the pesticide was associated with longer latencies providing
evidence of a linear dose-response relation.

In our secondary subgroup analyses, the relation between number of
pesticides detected in cord blood and CCT depended on the infant's cord
blood ferritin level (Figs. 1 and 2). Specifically, the relation was present
in the lower cord blood ferritin group (p=0.009 for non-masker condi-
tion; p=0.01 for 64ms condition) but not the higher cord blood ferritin
group (p = 0.34 for non-masker condition; p = 0.26 for 64 ms
condition).

4. Discussion

This study demonstrated an association between prenatal exposure
to multiple pesticides (as measured in cord blood) and infant auditory
function at 9 months of age. Infants who were exposed to higher num-
bers of pesticides prenatally had longer wave 5 latencies and CCT inter-
vals onABR testing. These associations seemed to be strongest in infants
with lower levels of cord ferritin. The fact that the findings were stron-
gest for the 64ms forward-masking conditionwas important given that
performance on this conditionwas associatedwith language acquisition
at 9 months in the same sample (Chonchaiya et al., 2013).

Testing the association between ABR function and each pesticide
class individually showed limited statistically significant results, but
echoed the findings of the total pesticide models with trends toward
longer latencies with more pesticide exposure and significant results
concentrated in the 64 ms condition. It did not allow us to pinpoint
which specific class or classes are most important when considering
the link between prenatal pesticide exposure and auditory processing
in infancy. Dose-response models for vinclozolin and diethyltoluamide
suggested that ABR latencies increase linearly with increasing cord
blood concentrations, at least for these highly-detected pesticides.

To our knowledge, this is only the second study to examine pesticide
exposures occurring prenatally and auditory function in human infants
(Sisto et al., 2015). Considering how a nutritional deficiency, such as
limited iron stores, might affect relations between pesticide exposure
and infant auditory function is another novel aspect of this pilot study.

Occupational and laboratory studies provide some limited evidence
of hearing loss and deficits in auditory-related function andmorphology
following high exposures to some pesticides (Gatto et al., 2014). Studies
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of farm workers, agricultural crop sprayers, and insecticide sprayers for
mosquito control programs have reported hearing loss/poorer scores on
audiometric tests (Beckett et al., 2000; Guida et al., 2010; Hoshino et al.,
2008; Harell et al., 1978), hearingdysfunction (Teixeira et al., 2003), and
self-reported reduced hearing capacity (Crawford et al., 2008). Relation-
ships between pesticide exposure and hearing loss in occupational set-
tings may be confounded by co-exposure to noise, however, making it
difficult to study the effects of pesticides alone (Gatto et al., 2014). Lab-
oratory studies using animals have also reported evidence of hearing
loss (Hadjab et al., 2004), increased thresholds (Hadjab et al., 2004;
Bergler et al., 1996), increased ABR inter-peak latencies (Bergler et al.,
1996), altered cochlearmorphology (Korbes et al., 2010), and decreased
numbers of outer and inner hair cells (Bielefeld et al., 2005; Nicotera
et al., 2004), though results vary largely depending on type of pesticide,
and route and duration of exposure.

The mechanism of ototoxicity following high levels of pesticide ex-
posure is believed to target the sensitive outer hair cells of the corti
organ in the inner ear (Gatto et al., 2014). Free radical and reactive ox-
ygen species generation are thought to lead to increased apoptosis in
this region of the ear because of its low levels of glutathione peroxidase,
making it more vulnerable to the effects of oxidative stress (Cardinaal
et al., 2000). The mechanism for low-dose developmental toxicity is
less clear. However, a recent study of environmental exposure to organ-
ochlorine pesticides in children found evidence of deficits in cochlear
status (Sisto et al., 2015).

One potential mechanism for the developmental neurotoxicity of
low-dose pesticide exposure is the disruption of oligodendrocyte devel-
opment and function in the brain. Several laboratory studies show that
oligodendrocytes may actually be more sensitive to low-level pesticide
exposure than neurons (Garcia et al., 2001; Garcia et al., 2002; Garcia
et al., 2003). Oligodendrocytes are responsible for the synthesis and
maintenance of the myelin sheaths that surround neuronal axons.
Myelin insulates, protects, and enhances the speed and quality of the
transmission of action potentials that move along neurons (Tau and
Peterson, 2010). Premyelinating oligodendrocytes populate the devel-
oping cortex during gestation and may be particularly sensitive to the
effects of prenatal pesticide exposure. Disruption of oligodendrocytes
early in life could potentially lead to deficits in myelination and predis-
pose infants to poorer cognitive and neurodevelopmental outcomes
later in childhood (Tau and Peterson, 2010). Myelination of the
human brain begins in the third trimester, with sensory tracts being
myelinated first (Tau and Peterson, 2010; Carlson, 2014).

Previous research on the effects of pesticide exposure on oligoden-
drocyte function and brainmyelination has been in rats and has focused
largely or primarily on organophosphate (OP) insecticides, specifically
chlorpyrifos (CPF) and diazinon (DZN), or the broad-leaf herbicide,
2,4-dichlorophenoxyacetic acid (2,4-D). Pups born to pregnant rats
treated with CPF during gestation or postnatally, corresponding to the
onset of myelination in rats, showed immediate and long-term deficits
in an oligodendrocyte-specific marker, myelin basic protein (MBP)
(Garcia et al., 2002; Garcia et al., 2003). Another study exposed neonatal
rats to CPF or DZN and found that CPF evoked a decrease in overall ex-
pression of myelin-related genes, as well as eliciting statistically signif-
icant deficits in the expression of specific myelin-related genes.
Treatment with DZN did not have an overall effect on myelin gene ex-
pression, but elicited a statistically significant reduction in individual
myelin-related gene expression (Slotkin and Seidler, 2007). Similarly,
neonatal exposure to 2,4-D resulted in myelin deficits in the rat pup
brain, as measured by protein expression (Duffard et al., 1996; Konjuh
et al., 2008) and electron microscopy (Konjuh et al., 2008; Rosso et al.,
2000), and alterations in behavior (Rosso et al., 2000).

Taken together, these studies indicate that exposure to CPF, DZN, or
2,4-D during the developmental period corresponding to the onset of
myelination can induce negative effects onmyelin-related gene expres-
sion and function and myelination in the brain. Though much of the
work to this point has focused on a few select pesticides, the results



Fig. 1. Pesticide–CCT relation by newborn ferritin group, non-masker condition.
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may be pertinent to other pesticides. Despite their differing modes of
action at high doses, these different classes of pesticides appear to elicit
similar effects on myelination in in vivo laboratory studies.

While we were unable to examine the effects of CPF or DZN alone
due to low levels of detection, our ABR results support the hypothesis
that pesticide exposure inhibits myelination. Here we observed that
exposure to a higher number of pesticides during pregnancy was asso-
ciated with longer CCT and wave V latencies. Longer CCT intervals and
wave V latencies indicate slower auditory transmission speeds. Since
myelination occurs centripetally, from themore central to themore dis-
tal parts of the pathway, thewave V latency is expected to increasewith
a disorder of myelination (Jiang, 1995). Additionally, myelination of the
auditory pathways begins late in gestation in the human. Thus, pesticide
levels in umbilical cord blood may adequately reflect fetal exposure
during the onset of myelination.
Fig. 2. Pesticide–CCT relation by newbo
We chose to examine a nutrient-toxicant interaction, the pesticide-
iron effect, because iron is important for early neurodevelopment and
concurrent exposure to pesticides and early-life iron deficiency is com-
mon in many parts of the world. Iron is essential for oligodendrocyte
function and myelination (Badaracco et al., 2010; Todorich et al.,
2009). Iron deficiency alters myelin-related genes and proteins in the
short- and long-term in developing rats and primate infants (Beard
and Connor, 2003; Beard, 2007; Siddappa et al., 2003; Clardy et al.,
2006). Previous findings of longer ABR latencies in iron-deficient
human infants are consistentwith impairedmyelination of the auditory
pathways (Algarin et al., 2003; Roncagliolo et al., 1998). Our sub-
analyses of the pesticide effect in infants with lower vs. higher ferritin
at birth are consistentwith these previousfindings.Weobserved slower
auditory transmission (longer CCTs) in infants with more pesticide ex-
posures and lower cord blood ferritin levels compared with similarly
rn ferritin group, 64 ms condition.
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exposed infantswith higher ferritin levels at birth, suggesting that there
may be important ferritin-pesticide interactions.

Our small sample size limits both our statistical power for detecting
subtle associations and our ability to adjust for possible confounding
variables. The study is further restricted by themethods of pesticide de-
tection. The relatively high LODs limited our ability to assess relations
between individual pesticides or mixtures and ABR outcomes more
quantitatively. Exposuremeasurement at only one timepoint (delivery)
means thatwe cannot characterize pesticide exposure throughout preg-
nancy and may miss other potentially sensitive windows of exposure.
Finally, the results may not adequately account for the effects of other
pesticides that may be present, since only a selection of non-persistent
pesticides were measured in cord blood. We anticipate that many of
these concerns will be ameliorated when this pilot study is expanded
to a larger sample.

Despite its limitations, this is only the second study to examine the
effects of prenatal pesticide exposures and human auditory function.
By examining a relatively large number and variety of pesticides we
could begin to explore the effects of the multiple exposures, unlike
many other studies that focus on only one pesticide or metabolite.
Also, measuring pesticide levels in cord blood provided stronger evi-
dence of exposure than non-specific urinary metabolites (Barr et al.,
1999; Munoz-Quezada et al., 2013). Finally, the use of ABR to assess of
auditory function provides a noninvasive indication of infant auditory
system myelination, giving insight into a possible mechanism for low-
level pesticide neurotoxicity.

5. Conclusions

This work provides preliminary evidence that auditory system
maturation may be delayed in infants with multiple prenatal pesticide
exposures and that this effect is strongest in infants with lower iron
stores at birth. The auditory system starts myelinating in late gestation
and matures rapidly in infancy. Longer CCT and wave V latencies
suggest that exposure to multiple pesticides prenatally has negative
effects on auditory system myelination early in life. Auditory system
development in infancy provides the foundation for many subsequent
learning processes, such as communication and language development
(Chonchaiya et al., 2013; Algarin et al., 2003). Therefore, delays or
altered timing of auditory systems myelination, related to prenatal
pesticide exposures, may contribute to detrimental long-term effects
on learning or other cognitive functions in childhood and possibly
beyond. Larger studies of pesticide exposure, iron deficiency, and
auditory system development are needed to verify the findings of this
pilot study.
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