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Abstract
Recurrent pregnancy loss (RPL) is a reproductive disorder defined as two or more successive and spontaneous pregnancy losses
(before 20 weeks of gestation), which affects approximately 1–2% of couples. At present, the causes of RPL remain unknown in
a considerable number of cases, leading to complications in treatment and high levels of stress in couples. Idiopathic recurrent
pregnancy loss (iRPL) has become one of the more complicated reproductive problems worldwide due to the lack of information
about its etiology, which limits the counseling and treatment of patients. For that reason, iRPL requires further study of novel
factors to provide scientific information for determining clinical prevention and targeted strategies. The aim of this study is to
describe the most recent and promising progress in the identification of potential genetic and epigenetic risk factors for iRPL,
expanding the genetic etiology of the disease.
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Introduction

Recurrent pregnancy loss (RPL) is a highly heterogeneous
condition defined as two or more successive clinical pregnan-
cy losses before 20 weeks of gestation and affects 1–2% of
fertile women worldwide [1]. The etiology of the disease com-
prises different factors, such as chromosome abnormalities in
the parents (2–5%), uterine alterations (10–15%), infections
(0.5–5%), endocrinological disorders (17–20%), and autoim-
mune diseases (20%); nevertheless, approximately 50% of
RPL cases remain unexplained (idiopathic) [1, 2].

Idiopathic recurrent pregnancy loss (iRPL) is a chal-
lenging condition that frustrates and adds emotional mor-
bidity to couples and physicians due to a therapeutic di-
lemma that implies a lack of knowledge about the reason
for repeated miscarriage and its correct management.

Although some women suffering from this condition
have good prognoses, in many other (often younger)
patients, it underlies unknown diseases or poorly under-
stood clinical conditions that give rise to poorer prog-
noses [3].

Research in the field of reproductive medicine is required
and is important for providing iRPL patients with answers
about their condition and better opportunities for targeted ther-
apies for this disease. In this paper, we aim to summarize
updated knowledge regarding the effects of genetic and epi-
genetic variants related to iRPL. Additionally, the goal of this
paper is to specify and enumerate different causes linked to
recurrent miscarriage and to reduce the uncertainty of the
cases classified as idiopathic.

Methods

The literature was obtained by a global search of articles in the
databases PubMed (http://www.ncbi.nlm.nih.gov/pubmed/),
Scopus (http://www.scopus.com/), and ScienceDirect (http://
www.sciencedirect.com/). Idiopathic recurrent pregnancy
loss, idiopathic recurrent miscarriage, unknown recurrent
pregnancy loss, and unknown recurrent miscarriage
keywords were used.
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We used the following as inclusion criteria: (1) original
articles, reviews, or meta-analysis published from 2009 to
2016, (2) articles that indicate a possible genetic and epigenet-
ic association with iRPL, (3) define RPL as two or more mis-
carriages, (4) any ethnic population, (5) articles were in
English.

Parental chromosomal abnormalities Schuster and Ford
established that parental cytogenetic abnormalities explain ap-
proximately 2–5% of RPL, with balanced Robertsonian and
reciprocal chromosomal translocations being the most com-
mon alterations [1]. A comparable percentage has been vali-
dated by recent studies. For example, Sheth et al. reported that
chromosomal abnormalities occur in 3.7% of RPL cases, with
reciprocal translocations being the most common chromo-
somal abnormalities (24.7%), followed by Robertsonian
translocations (17.64%), mosaicism (4.11%), small supernu-
merary marker chromosomes (4.7%), and interstitial
microdeletions (0.6%) [4]. Ocak et al. found chromosomal
abnormalities in 5.7% of parents with RPL, 92.9% of which
were structural types [5]. Asgari et al. showed that 3.07% of
couples with two miscarriages and 5.3% of couples with three
miscarriages exhibit genetic abnormalities [6]. El-Dahtory re-
ported a frequency of abnormalities in 6.1% of Egyptian cou-
ples with iRPL, with structural abnormalities being the most
frequent alterations [7] (Fig. 1).

Chromosomal abnormalities in spontaneous abortion prod-
uctsThe presence of chromosomal abnormalities is a common
feature of cells from spontaneous abortion samples, and unlike
those reported in parents, these tend to be numerical abnor-
malities and had a higher prevalence. This was shown by
Ocak et al., who observed 31.9% of abnormalities (mostly
numerical) in the tissue of analyzed abortions, compared to
just 5.7% of abnormalities (mostly structural) in couples with
RPL [5]. Furthermore, Marquard et al. reported aneuploidies
(mainly trisomy) in 78% of spontaneous abortion products
from women over 35 years of age who were affected by
iRPL but did not detect any chromosomal abnormalities in
the parents [8].

This confirms that aneuploidies in the abortion products
may be involved with a large number of iRPL cases and that
embryo karyotyping from patients with iRPL can provide sig-
nificant benefits to patients. This has been shown by Hodes
et al., who analyzed 2282 spontaneous abortion products from
mothers with normal karyotypes and who were diagnosed
with iRPL and found aneuploidies in 60% of these cases [9].
On the basis of these results, they proposed the use of preim-
plantation genetic screening as a useful preventive strategy
that significantly reduced the miscarriage rate to just 6.9%
by selecting euploid embryos for implantation [9].

The high incidence of aneuploidies in abortion material
from iRPL cases shows strong evidence that this condition is

mostly caused by numerical chromosome abnormalities in the
fetus (Fig. 1) but also raises questions regarding the predis-
posing factors in couples suffering from iRPL. One explana-
tion for this phenomenon may be the meiotic errors during
spermatogenesis or oocyte maturation, because a high rate of
errors has been associated with RPL and the occurrence of
aneuploidies [10]. In this respect, some authors have indicated
an involvement of synaptonemal complex protein 3 (SYCP3)
alterations, as these are associated with reproductive problems
and because this protein plays a critical role in synapse pro-
cesses, recombination, and segregation of meiotic chromo-
somes [11, 12]. In this regard, Bolor et al. described mutations
(denominated c.IVS7–16_19delACTT and c.657T→C) in
SYCP3 gene that are associated with iRPL cases, and which
this study proposes as risk factors for chromosomal nondis-
junction and aneuploid embryo formation [11]. The authors
suggested that these genetic variants can lead to an aberrant
synaptonemal complex, abnormal chromosomal segregation,
and chromosomal abnormalities [11]. Later, Sazegari et al.
(2014) found that the T657C polymorphism in the SYCP3
gene may be a genetic factor for women with iRPL. Variants
in the SYCP3 gene could alter the pairing and recombination
of homologous chromosomes during meiosis and may lead to
a high risk of embryo aneuploidy [12]. Nevertheless, as these
variants are only present in a subset of women with iRPL,
more studies are required to clarify the role of other variations
inmeiotic genes that could lead to chromosomal abnormalities
in the gametes and embryos. Alternately, mutations in the
SYCP3 gene in men are more commonly associated with azo-
ospermia by meiotic arrest than with RPL [13]; nevertheless,
Stouffs et al. reported a variant (c.548T > C) in the SYCP3
gene in one man from a couple suffering from recurrent mis-
carriage [14]. However, as this genetic change was present in
only one case, further studies are required.

Telomere length in couples with iRLP Telomeres are the end
parts of chromosomes, composed mainly of highly repetitive
and noncoding DNA with an important role in the mainte-
nance of chromosome integrity, cell division, and cell survival
[15]. Due to this critical role in cellular homeostasis, the telo-
mere length influences different disorders such as cancer, ag-
ing, and degenerative diseases [15]. Although its role in the
risk of recurrent miscarriage has not been well-studied,
Thilagavathi et al. reported that shorter telomere length in both
members of a couple is associated with iRPL, as this can
reduce the potential for cell replication in the blastocyst or
embryo [16]. Similarly, Hanna et al. found that couples with
RPL had shorter telomeres than controls and proposed that
this could be related to a faster aging rate [17] (Fig. 1). This
research highlights the telomere length as a potential factor in
the disease; however, more studies are needed to confirm
these results and determine the cause of telomere shortening
in couples with iRPL.
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Male factor The common etiology of RPL underestimates the
effect of genetic sperm parameters in the disease, but some
parameters such as damaged DNA integrity (DNA fragmen-
tation), loss of organization, loss of chromatin compaction
(nuclear chromatin decondensation), and chromosomal aneu-
ploidy are associated with iRPL [18]. DNA fragmentation is
the critical male factor associated with the disease and can
contribute to unsuccessful pregnancy in couples, even in
men with a normal quantity, motility, and morphology of sper-
matozoa [19]. The degree of DNA fragmentation is related to
both infertility and iRPL; Kumar et al. found that men with
iRPL show a higher DNA fragmentation index than fertile
controls and proposed that a high percentage of sperm DNA
fragmentation is associated with male infertility, whereas a
lower percentage did not affect fertilization but increased the
risk of pregnancy loss [20] affecting embryogenesis and caus-
ing problems in pregnancy maintenance [20, 21].

This DNA damage is primarily caused by oxidative stress,
which is due to an increase in free radicals that have a negative
impact on cell DNA integrity. Because of the effect of DNA
fragmentation and the role of oxidative stress in iRPL, man-
agement by antioxidant supplement therapy in these patients
would appear to be an important strategy for minimizing the
risk of genetic damage to their gametes [21].

Alternately, recent studies have found that couples with
iRPL have higher rates of sperm aneuploidy [18, 22], even
though the male exhibits normal sperm parameters such as cell
count and mobility [22]. Surprisingly, chromosomal polymor-
phisms such as variants of satellite size in the male acrocentric
chromosomesmay increase the risk of sperm aneuploidies and
subsequent embryo loss [23].

Another male factor that may be associated with iRPL is
the presence of microdeletions in the Bazoospermia factor^
regions (AZFa, AZFb, and AZFc) on the Y chromosome.
The AZF regions on the Y chromosome have been related to
defective spermatogenesis, giving rise to infertility problems.
Associations between Y chromosome microdeletions and
iRPL have been found in a study by Agarwal et al., where
microdeletions were shown to be a possible cause of the dis-
ease [24]. Likewise, the study by Soleimanian et al. found
associations between microdeletion of the AZFc region and
RPL in Iranian men [25] (Fig. 1). However, it is necessary to
investigate other male factors associated with iRPL, since
these microdeletions have not always been observed in this
type of patient [26] [27].

Effect of genetic disturbance

iRPL is a highly heterogenic disease. There are many genetic
aberrations that can influence the development and progress of
iRPL altering important biological pathways. Krieg et al. used
a microarray technique validated by qRT-PCR to compare

gene expression of deciduas from iRPL cases with controls
(one normal term delivery sample and an aneuploid embryon-
ic demise sample). Krieg et al. demonstrated deregulation of
155 genes involved in multiple processes such as the cell
cycle, apoptosis, cell signaling, mobility, and immune re-
sponse [28]. Similarly, Othmanet et al. identified 346 genes
differentially expressed in the secretory endometrial lining
from RPL cases and fertile women that are involved in angio-
genesis, cell adhesion, cell cycle, cell differentiation, and em-
bryonic morphogenesis [29]. These studies highlight the role
of genetic disorders in RPL and indicate the importance of
research in this field. Thus, in this paper, we want to show
that particular variants of key genes can be related to recurrent
miscarriages that have unknown etiologies.

Genetic variants can alter correct tissue
formation and remodeling during pregnancy

For a successful pregnancy, structural and physiological
changes in maternal tissues are required during embryo im-
plantation, placentation, and pregnancy maintenance. For this
reason, alterations due to point mutations and genetic poly-
morphisms in genes involved in embryo implantation and
placentation could be risk factors for iRPL (Table 1).

Studies have found that polymorphisms in vascular endo-
thelial growth factor (VEGF)-related genes might be associat-
ed with iRPL. The VEFG gene plays a key role in vasculari-
zation and angiogenesis (blood vessel formation), and it has
been found to be downregulated in iRPL with possible effects
on vascular dysfunction [74]. The rs35569394 (− 2549 I/D)
and rs1570360 (-1154G >A) polymorphisms in the functional
promoter region of the VEGFA gene have been proposed to be
potential risk factors for iRPL [30, 31], although more studies
are necessary to confirm this. Similarly, a case-control study
found that the rs1870377 (1719A/T) polymorphism in the
vascular endothelial growth factor receptor 2 (VEGFR-2 or
KDR) is significantly associated with iRPL and may be a
factor in disease susceptibility [32]. Cao et al. found that the
rs6053283 polymorphism Prokineticin receptor 2 (PKR2), a
receptor for the endocrine gland-derived vascular endothelial
growth factor 2, was significantly associated with iRPL in the
Chinese Han population probably due to its role in angiogen-
esis during pregnancy [33]. Additionally, meta-analysis stud-
ies have shown that rs1042522 (p53 Arg72Pro or p53 codon
72) polymorphisms in the TP53 gene (another gene related to
angiogenesis and embryo development) are related to the oc-
currence of iRPL [31, 34]. These studies support the hypoth-
esis that vasculogenesis dysfunction during embryogenesis,
which is promoted by gene alteration, may affect pregnancy
and predisposition to iRPL.

Endothelial nitric oxide synthase (eNOS) is an enzyme that
plays a role in vascular relaxation-contraction, which is
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important to the implantation process because it facilitates
correct perfusion and endometrial receptivity [74]. Recent
studies have shown an association between downregulation
of the eNOS enzyme and iRPL. Furthermore, the rs1799983
(G894T) polymorphism in the eNOS gene has been associated
with iRPL [31, 35], although this association may vary be-
tween study populations [35].

Other enzymes of interest in iRPL are the matrix metallo-
proteinases (MMPs). MMPs are related to the degradation and
remodeling of the endometrial extracellular matrix, which is
an important event in decidualization, implantation, and pla-
centation. Furthermore, it has been found that function al
polymorphisms such as rs2285053 (− 735 C/T) in MMP2
and rs34016235 (− 1562 C/T) in MMP9 are associated with
iRPL in women [36].

Similarly, it has been proposed that the rs1042838
(PROGIN or G/T - Val660Leu) polymorphism in the

progesterone receptor (PGR) gene could be a factor that con-
fers susceptibility to iRPL, since progesterone is important in
different reproductive pathways such as oocyte maturation,
implantation, and maintenance of the placenta [37].

Genetic variants that affect hemostasis
and thrombophilia susceptibility

Different factors associated with susceptibility to iRPL are
linked to genetically inherited thrombophilia, because the pre-
disposition to improperly form blood clots can affect blood
flow to the fetus and cause vasculopathy (Table 1). One of the
most frequently studied genetic alterations that can lead to
these disorders is in the gene for the methylenetetrahydrofo-
late reductase (MTHFR) that acts on the methionine cycle and
folate metabolism affecting its enzymatic activity and leading

Fig. 1 Chromosomal
abnormalities in recurrent
pregnancy loss. Chromosomal
abnormalities have been found to
be associated with recurrent
pregnancy loss at the level of the
parents, gametes, and fetus.
Numerical and structural
abnormalities show the strongest
evidence of a relationship with the
disease
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Gene Common names rs code Biological effect Reference

VEGFA − 2549 I/D rs35569394 Vascular function [30]

VEGFA -1154G>A rs1570360 Vascular function [31]

VEGFR-2 1719A/T rs1870377 Vascular function [32]

PKR2 Unspecified rs6053283 Vascular function [33]

TP53 p53 Arg72Pro or p53 codon 72 rs1042522 Vascular function and embryo development [31, 34]

eNOS G894T rs1799983 Vascular relaxation-contraction [31, 35]

MMP2 − 735 C/T rs2285053 Remodeling of extracellular matrix endometrium [36]

MMP9 − 1562 C/T rs34016235 Remodeling of extracellular matrix endometrium [36]

PGR G/T - Val660Leu (PROGIN) rs1042838 Oocyte maturation, implantation, and maintenance of the placenta [37]

MTHFR A1298C rs1801131 Thrombophilia [38–40]

MTHFR C677T rs1801133 Thrombophilia [38–43]

F5 factor V Leiden rs6025 Thrombophilia [44, 45]

F2 G20210A rs1799963 Thrombophilia [46]

THBD C1418T rs1042579 Thrombophilia [47]

EPCR 1652C /G rs867186 Thrombophilia [48]

SERPINC1 786G>A rs2227589 Thrombophilia [49]

F13A1 Val34Leu-G103T rs5985 Thrombophilia [50]

F13A1 Y205F-A614T rs3024477 Thrombophilia [51]

F13A1 C1694T or Pro564Leu rs5982 Thrombophilia [51]

PAI-1 4G/5G rs1799889 Thrombophilia [45, 50, 52–55]

PAI-1 -844G >A rs2227631 Thrombophilia [53]

PAI-1 11053T >G rs7242 Thrombophilia [53]

ACE I/D rs1799752 Thrombophilia [56, 57]

IL-1β − 511T >C rs16944 Immune tolerance [58]

IL-17 G-197A rs2275913 Immune tolerance [59]

IL-18 137G/C rs187238 Immune tolerance [60]

IL-10 − 819 C/T rs1800871 Immune tolerance [61]

IL-10 2195 A >G rs1518111 Immune tolerance [62]

IL-6 -634C/G rs1800796 Immune tolerance [63, 66]

TGF-β1 G915C or Arg25Pro rs1800471 Immune tolerance [64]

TNF-α − 863C >A rs1800630 Immune tolerance [65]

CTLA-4 + 49A/G rs232775 Immune tolerance [66]

FOXP3 − 924 A/G rs2232365 Immune tolerance [67]

FOXP4 − 3279 C/A rs3761548 Immune tolerance [67]

FOXP5 del/ATT rs5902434 Immune tolerance [67]

FOXP6 Unspecified rs2294021 Immune tolerance [67]

SELP C-2123G or N562D rs6127 Immune tolerance [68]

DICER Unspecified rs3742330 Epigenetic [69]

DROSHA Unspecified rs10719 Epigenetic [69]

XPO5 Unspecified rs11077 Epigenetic [69]

RAN Unspecified rs14035 Epigenetic [69]

MIR125a Unspecified rs12976445 Epigenetic [70, 71]

MIR125a Unspecified rs41275794 Epigenetic [70, 71]

MIR423 Unspecified rs6505162 Epigenetic [72]

MIR27a Unspecified rs895819 Epigenetic [73]

MIR449b Unspecified rs10061133 Epigenetic [73]
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to the clinical condition hyperhomocysteinemia. Although the
association of polymorphisms in this gene with the disease is
still controversial, some case-control studies have found an
association in the MTHFR rs1801131 (A1298C) and
rs1801133 (C677T) polymorphisms with iRPL [38, 39].
Additionally, a meta-analysis by Yang et al. concluded that
both polymorphisms are associated with hyperhomocysteine-
mia [40], while the meta-analysis by Chen et al., Yunlei et al.,
and Wu et al. identified an association with the C677T poly-
morphism but not with the A1298C polymorphism [41–43].
Nevertheless, it is important to consider that this association
may vary depending on the study population [41, 42].

On the other hand, genetic variations in key molecules of
the coagulation cascade can be involved in predisposition to
iRPL (Fig. 2). Genetic variations in coagulation factor V (FV)
have been suggested to be a risk for iRPL. In the coagulation
cascade, the active form of FV causes coagulant effects by
catalyzing the conversion of prothrombin to thrombin, which
is normally inhibited by active protein C (APC). The best-
studied mutation in the FV gene (F5) is the rs6025 variant,
also known as factor V Leiden (FVL), which leads to a pre-
disposition to the formation of blood clots, because it confers
resistance to inactivation by APC [44, 45]. Recent studies
have found that it may be a risk factor for iRPL in both par-
ents, because the father can transmit the FVL allele (which is
autosomal dominant) to the fetus, causing thrombosis in fetal
blood vessels [44, 45]. Nevertheless, not all studies have
found associations between FVL and iRPL; thus, a recent
study involving Brazilian women did not detect significant
differences in FVL allele frequencies between cases and con-
trols [75].

Additionally, there is a possible association between the
rs1799963 (G20210A) polymorphism in the prothrombin (a
precursor of thrombin) gene (F2) and iRPL in women, as
these mutations raise the level of thrombogenic precursors
leading to an increased risk of placental thrombophilia [46].
Nevertheless, Gonçalves et al. found no significant differences
in the genetic frequency of these variants between cases with
iRPL and controls in a sample of Brazilian women [75].

Variants of inhibitors of the coagulation process may have
an association with iRPL. APC activator polymorphisms,
such as thrombomodulin gene (THBD) rs1042579 (C1418T)
and endothelial protein C receptor gene (EPCR) rs867186
(1652C/G) have been proposed to be risk factors for iRPL
due to the association of these variants with lower levels of
soluble proteins impeding the adequate regulation of coagula-
tion processes [47, 48]. Similarly, the rs2227589 (786G >A)
polymorphism in the antithrombin (AT or SERPINC1) gene
has been associated with an increased risk of iRPL, as these
proteins inhibit the transition of prothrombin to thrombin and
avoid the coagulation process [49].

Finally, the rs5985 (G103T or Val34Leu), rs3024477
(A614T or Y205F) and rs5982 (C1694T or Pro564Leu)

polymorphisms in coagulation Factor XIII (F13) have been
associated with iRPL, as this factor is important in the final
steps of the coagulation cascade because of its role in cross-
linking fibrin and giving stability to the clot [50, 51]. The
variant Val34Leu of FXIII appears to increase enzyme activity
and the stability of the clot, which would lead to an increase in
thrombophilia risk, but the A614T and C1694T variants ap-
pear to be associated with decreased levels and reduced en-
zyme activity, whichmay contradict this hypothesis; however,
FXIII is not only important in coagulation processes but also
in tissue remodeling during pregnancy [50, 51].

On the other hand, studies have shown the importance of
genes that control the fibrinolysis process (degradation of fi-
brin by plasmin enzyme, leading to the dilution of thrombus),
such as the plasminogen activator inhibitor-1 (PAI-1) gene that
impedes fibrinolysis through inhibition of the enzymes in-
volved in the conversion of plasminogen to plasmin. Several
studies have reported an association between the PAI-1
rs1799889 (4G/5G) polymorphism and iRPL, because this
polymorphism can generate high levels of its protein and in-
crease resistance to fibrinolysis [45, 50, 52–54, 55]. Salazar
et al. showed that this genetic variant can alter the metabolic
and immunological profiles of patients with iRPL [54].
Although a meta-analysis of this polymorphism conducted
by Su et al. failed to find an association with iRPL, the authors
suggested that it was due to the high heterogeneity of the
studies and emphasized the importance of PAI-1 in the fibri-
nolysis process, not only in the removal of thrombus but also
in the processes of tissue remodeling during embryo implan-
tation and placentation [57]. Similarly, a case-control study of
a Polish population conducted by Kurzawińska et al. did not
find a significant difference in the polymorphism frequency
between cases of unknown RPL vs controls [82]. Finally,
other polymorphisms such as rs2227631 (-844G > A) and
rs7242 (11053T > G) in PAI-1 have been proposed as risk
factors for the disease in Korean women [53].

Associations with iRPL have also been found for the
rs1799752 (I/D) (insertion or deletion in intron 19 of 287-bps)
polymorphism in the angiotensin-converting enzyme (ACE)
gene due to its importance in vasoconstriction and regulation of
PAI-1 activity, which has been associated with iRPL in a meta-
analysis conducted by Su et al. [57]. Likewise, Fazelnia et al.
observed an association between the ACE (I/D) variant with
iRPL in Iranian women [56]. However, other studies in Iranian
and Polish populations did not find an association between these
polymorphisms and iRPL [55, 82], indicating that more research
is required to establish this association.

Genetic variants of immune tolerance

Fetal tissues and cells are semi-allogeneic in the uterus and
certain processes should be addressed to correct immune
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tolerance to the fetus. It has been proposed that the activation
of inflammatory processes of immune rejection and the sup-
pression of immune regulators contribute to iRPL [76, 77].
Studies have demonstrated genetic variations in interleukin
(IL) genes responsible for stimulating and regulating the ac-
tivity of the immune system (Table 1). The importance of pro-
inflammatory IL genes such as the IL-1β rs16944 (− 511T >
C) polymorphism has been associated with iRPL in Korean
women, and it has been involved with an increased activity of
NK (natural killer) cells leading to a greater immune response
[58]. Likewise, the rs2275913 (G-197A) polymorphism in the
IL-17 gene has been associated with an increased miscarriage
risk [59], and higher levels of IL-17 have been found in

women with iRPL [77, 59]. Similarly, Chen et al. reported
that the rs187238 (137G/C) polymorphism in the IL-18 gene
has also been related to an increased risk of iRPL, because this
variant is associated with high transcriptional activity of the
IL-18 gene that stimulates the immune response [60].

Likewise, variants in anti-inflammatory ILs such as the
rs1518111 (2195 A >G) and rs1800871 (− 819 C/T) polymor-
phisms in the IL-10 gene have been shown to lead to an in-
creased risk of iRPL, as IL-10 regulates the immune response
and its secretion has been considered essential for successful
pregnancy [61, 62]. In addition, research with Iranian women
has shown a relationship between the rs1800796 (-634C/G)
polymorphism in the IL-6 gene and an increased risk of iRPL,

Fig. 2 Role of hemostasis dysregulation in iRPL. Schematic
representation of the coagulation and fibrinolysis processes and the role
of key proteins affected in iRPL. Disruption of the hemostasis process in

iRPL by increases in procoagulant activity and loss of anticoagulant
controllers leads to the formation of thrombus in the mother-fetus vessels
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because IL-6 plays a role in reproduction and immune bal-
ance, acting as a multifunctional cytokine with pro and anti-
inflammatory properties and mediates the balance between T
helper (Th)-17 and Treg cells [63, 66].

Different genetic variants in cytokines may affect iRPL
susceptibility, such as the polymorphism rs1800471 (G915C
or Arg25Pro) in the transforming growth factor beta 1
(TGF-β1) gene that acts as an anti-inflammatory cytokine
with a critical role in the control of T and B lymphocytes
[64]. Alternately, the rs1800630 (− 863C >A) polymorphism
in the tumor necrosis factor-alpha (TNF-α) gene, a pro-
inflammatory cytokine, was associated with an increased risk
of iRPL in Korean women [65].

Additional genetic variants such as the human leukocyte
antigen E (HLA-E * 0101) polymorphism can increase sus-
ceptibility to the disease, since it is one of the few HLAs
expressed in the fetal trophoblast and has a critical role in
the regulation of NK cells [83]. Additionally, the rs232775
(+49A/G) polymorphism in the cytotoxic T-lymphocyte anti-
gen 4 (CTLA-4) gene may be a risk factor for iRPL, as this
molecule is an important antigen for regulation of the T cell
response and for immune tolerance [66].

Recent studies have demonstrated a possible association
between iRPL and the rs2232365 (− 924 A/G), rs3761548
(− 3279 C/A), rs5902434 (del/ATT) and rs2294021 variants
of the transcription factor Forkhead Box P3 (FOXP3) gene, an
essential protein for the development of regulatory T cells and
suppression of the immune response [67]. Similarly, the
rs6127 (C-2123G or N562D) polymorphism in P-selectin
(SELP) may play a role in susceptibility to iRLP, since this
protein is important in leukocyte recruitment [68]. Recent ev-
idence shows the importance of immune response regulation
for successful pregnancy and the relationships between genet-
ic variants and increased risk of iRPL that are related to the
correct balance between pro-inflammatory and immune regu-
latory molecules.

Epigenetic deregulation in iRPL

Epigenetic markers are responsible for controlling correct
gene expression to ensure cellular and tissue homeostasis.
Modifications in epigenetic machinery play an important role
in the biological regulation of many diseases, such as iRPL, as
crucial changes in epigenetic markers during pregnancy are
necessary for embryo implantation, tissue remodeling, and
pregnancymaintenance. Although there is limited information
about the role of epigenetic alterations in multiple miscar-
riages, these changes have been implicated in reproductive
complications [78].

Among the different alterations, the skewed X chromo-
some inactivation (SXCI) has been associated with iRPL.
The inactivation of one X chromosome is a phenomenon that

occurs in female mammals as a mechanism of dosage com-
pensation that consists of random inactivation of one of the
two X chromosomes (maternal or paternal) [79]. With X chro-
mosome inactivation, 50% of the somatic cells in an individ-
ual carry the inactivated paternal X chromosome and 50%
carry an inactivated maternal X chromosome. When this pro-
cess does not occur randomly, females have one chromosome
(maternal or paternal), which is more frequently inactivated
than the other. When 75–80% of cells are inactivated, the
same X chromosome is defined as SXCI and when this occurs
in 90%–95% of cells, it is defined as extreme SXCI (ESXCI)
[80, 81].

There is no clear consensus about the association of
SXCI and iRPL, but a meta-analysis conducted by Sui
et al. showed that there is an association between
ESXCI and iRPL for women with three or more mis-
carriages [84]. However, no significant association was
found when the degree of SXCI was lower (< 90%) or
when RPL was defined as two or more miscarriages
[84]. While Su et al. showed that ESXCI was signifi-
cantly and consistently associated with iRPL, this asso-
ciation was found both when RPL was defined as either
two or three miscarriages [37]. Given the recent reports,
ESXCI may play a critical role in the unknown etiology
of RLP, but further studies are needed on the molecular,
cellular, and physiological implications of this abnormal
inactivation.

Another epigenetic phenomenon of interest in understand-
ing iRPL is the pattern of DNA methylation (addition of a
methyl group to cytosine), which is a critical process for silenc-
ing specific genes in order to maintain cellular homeostasis and
identity [85]. In this regard, Hanna et al. found differences in
the methylation patterns in specific loci associated with recur-
rent abortion, imprinted genes, and immune signaling pathways
in placenta samples from patients with iRPL [86].

Interest in research on microRNAs (miRNAs) has in-
creased in recent years. miRNAs are molecules that interfere
with the translation of specific target genes having an impor-
tant role in gene expression regulation. Jung et al. found an
association between iRPL and polymorphisms in coding
genes for key proteins in miRNA biogenesis, such as
rs3742330 in DICER, rs10719 in DROSHA, rs11077 in
exportin-5 (XPO5), and rs14035 in RAN GTPase (RAN)
[69]. Additionally, other studies have shown an association
between the disease and variants in genes encoding miR-
125a (rs12976445 and rs41275794), miR-423 (rs6505162),
miR-27a (rs895819), and miR-449b (rs10061133). Because
these polymorphisms can deregulate miRNAs levels or activ-
ity, leading to inadequate regulation of the miRNAs target
genes, which are related to embryonic development and main-
tenance of pregnancy [70–73]. Similarly, higher levels of
miR-16 have been found in villi and deciduas of iRPL pa-
tients, which could affect pregnancy as this miRNA target
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VEGF inhibiting its expression and negatively affecting the
placentation and angiogenesis processes [87].

Long noncoding RNAs (lncRNs) are other factors of inter-
est in the epigenetic control of gene expression and research
on these RNAs may contribute to understanding the mecha-
nisms involved in iRPL. A recent study identified 1449
lncRNAs that are differentially expressed between women
with RPL and healthy controls [88]. The authors also indicat-
ed that the deregulated lncRNAs are primarily involved in
endocrine, immunity, cellular-extracellular matrix interaction
and cell apoptosis pathways [88].

Discussion and conclusions

iRPL is a multifactorial disease with a large percentage of
cases with unknown causes giving rise to difficulties in treat-
ment and leading to more pressure and stress in infertile cou-
ples. This has led to research to determine the etiology of
recurrent pregnancy seeking to improve treatments and pre-
ventive strategies (Fig. 3).

The only consensus of genetic factors considered to be
associated with RLP that explain 2–5% of the cases are chro-
mosomal abnormalities (mostly structural) in the parents. In
addition, aneuploidy of the developing embryo is quite

common in RPL, especially with idiopathic losses, showing
strong evidence of its relationship with the disease and con-
sidered to be the major cause of iRPL.

Additionally, different chromosomal alterations not detect-
ed by traditional cytogenetic techniques such as the length of
telomeres, skewed X inactivation, sperm DNA fragmentation,
and microdeletions in the Y chromosome have been found to
be associated with risk of iRPL. However, published literature
is still controversial with regard to its association with iRPL
due to differences in results from various studies, populations,
and definitions of the pathology (defined as two or three
miscarriages).

A number of studies have investigated specific gene vari-
ants that can predispose couples to iRPL that affect essential
processes in pregnancy such as implantation, placentation,
blood vessel formation, maintenance of hemostasis, and im-
mune tolerance. However, the results are inconclusive as a
consequence of uncommon genetic variants in particular pop-
ulations. Therefore, we conclude that iRPL is a highly multi-
factorial disease that apparently includes the deregulation of
key genes involved in pregnancy. Nevertheless, due to its
multifactorial etiology, complex characteristics and differ-
ences in prevalence of genetic variants between populations,
it is difficult to establish with confidence the risk factors or
biological or molecular markers.

Fig. 3 Associated factors of RPL. The known etiology includes proven causes of RPL. The idiopathic etiology is limited to cases in which there is no
scientific consensus, but recent studies have found associations with the disease
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