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Abstract: Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction
(rEF) is characterized by pathological activation of the renin–angiotensin–aldosterone system (RAAS)
with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active
renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma
biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its
potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate
that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in
companion animals and experimental models of HF. Plasma renin activity levels are also reported to
be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation
of renin activity in experimental HF significantly reduces edema formation and the progression of
systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated
renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate
patients with HFrEF.

Keywords: heart failure; plasma renin activity; renin–angiotensin–aldosterone system; renin;
prorenin; (pro)renin receptor; reduced systolic function; dilated cardiomyopathy; direct renin
inhibitor; aldosterone

1. Introduction

Symptomatic heart failure (HF) with reduced ejection fraction (rEF) affects millions and is the
most common reason for heart transplantation [1–3]. The prevalence of symptomatic HF will increase
46% from 2012 to 2030 [4]. Dilated cardiomyopathy (DCM) due to nonischemic or ischemic causes
is characterized by progressive heart enlargement with rEF, which is a major risk factor for the
development of symptomatic heart failure with reduced ejection fraction (HFrEF) [2,3,5,6].

The American College of Cardiology/American Heart Association (ACC/AHA) staging system
suggests that HFrEF predictably progresses though four stages, from A to D. Patients at risk for
DCM have Stage A HF and usually progress to Stage B, where there is a decline in systolic function;
both Stages A and B are without symptoms or are presymptomatic. Subsequently patients develop
symptomatic HF (Stages C and D), which is associated with fluid retention (edema), breathlessness,
fatigue, exercise intolerance, and death [7]. Transition from presymptomatic HF to symptomatic HF is
critically important for patients as it leads to a marked decline in the quality of life and is associated
with significant morbidity and mortality [4,8].

Regardless of the cause of DCM, the progression from asymptomatic to symptomatic HF is
associated with interdependent, neurohormonal alterations of the sympathetic nervous system (SNS),
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the renin–angiotensin–aldosterone system (RAAS), and the natriuretic peptide (NP) system [9–13].
Neurohormonal activation may initially compensate for impaired cardiac function; however, prolonged
activation has deleterious effects on cardiac structure and performance, leading to symptomatic HF
associated with edema [8,13,14]. An elevation in plasma norepinephrine signifies SNS activation,
which occurs at Stage B in clinical and experimental HF and is strongly associated with progression
of systolic dysfunction, congestion, and RAAS activation [15,16]. The NP system acts to counter the
SNS-RAAS by promoting diuresis, natriuresis, and vasodilation [11,17–21]. However, the effects of the
NP system are attenuated in advanced HF Stages C and D [22–25]. Activation of RAAS is associated
with left ventricular dysfunction, cardiac dilation, sodium and extracellular fluid retention (edema),
and cachexia/sarcopenia [26]. Systemic RAAS activation occurs with increased plasma renin activity,
which initiates the activation of the primary targets for clinical intervention: angiotensin II (Ang II)
and aldosterone [27]. Pharmacological blockade of RAAS has proven to be the mainstream/standard
treatment approach for symptomatic HFrEF patients [28–37]. Standard medical therapies include
RAAS blockers: angiotensin converting enzyme (ACE) inhibitors (ACE-I), which block the enzymatic
conversion of Angiotensin I (Ang I) to Ang II; Ang II receptor blockers (ARB), which block the binding
of Ang II to the Ang II type I receptor (AT1); mineralocorticoid receptor antagonists (MRA), which
block effects of aldosterone; and angiotensin receptor/neprilysin (NEP) inhibitors (ARNi) [38,39]. Direct
renin inhibitors (DRI) are designed to block enzymatically active renin from triggering a pathological
alteration of downstream pathways. However, clinical trials have failed to demonstrate the value of
renin activity inhibition for improving outcomes for patients with HF on concurrent RAAS blockers or
diuretics [40–42]. Complicating the issue is the heterogeneity of patient plasma renin activity levels
and their individualized responses to plasma renin activity levels on the background of RAAS blockers
or HF progression itself.

Here, we review the role of active renin in HFrEF progression and the potential benefits of renin
activity as a diagnostic and/or prognostic plasma biomarker, as well as the potential value of renin
inhibitors as a targeted therapy for HFrEF.

2. Pathways of Renin Generation and Function

Systemic RAAS maintains vasoconstriction, retains sodium and water, increases arterial blood
pressure, and increases myocardial contractility, thus increasing the effective circulating blood volume
during physiological and pathological conditions including HF [43,44]. Pathologically activated RAAS
promotes symptomatic HFrEF [11,45]. The systemic RAAS activation cascade begins with production
of prorenin and its conversion/activation to renin (Figure 1), an enzyme that was discovered more
than a hundred years ago [46]. Renin activity in plasma increases as HFrEF progresses and is highest
with symptomatic HFrEF in patients and animals. The prorenin/renin pair directly and indirectly
modulates HFrEF progression. Figure 1 schematically represents a potential role of renin activity in
the modulation of HFrEF through direct and indirect actions.

Renin is a monospecific aspartic protease [47] that cleaves glycoprotein angiotensinogen
systemically in the circulation or locally at the tissue level to generate angiotensin I (Ang I), which
is the key and rate-limiting step in the RAAS activation cascade. Thus, while the concentration of
angiotensinogen in plasma is approximately 500–600 pmol, Ang I is present in plasma in at least
10,000-folds lower concentration in the 50- to 100-fmol range and Ang II at approximately half of
Ang I [48]. It is important to note that circulation levels of angiotensinogen are in the range of the
Michaelis–Menten constant for renin; therefore, small modulations in either renin or angiotensinogen
levels may significantly alter downstream outcomes [49]. Ang I is the precursor of the physiologically
active peptides, Ang II and Angiotensin (1–7) (Ang (1–7)). These are generated by different enzymes,
ACE or ACE 2 and NEP; they act through distinct cell surface receptors with opposing biological effects
(e.g., vasoconstriction vs. vasodilatation, etc.). However, how these interdependent effects modulate
HFrEF is poorly understood. Ang II binds AT1 in targeted tissues and stimulates vasoconstriction
and secretion of the steroid hormone aldosterone, which mediates sodium reabsorption and water
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retention [50,51]. Ang (1–7) is a vasodilator that works through the Mas receptor and opposes the
actions of increasing Ang II [52–59]. Ang II and Ang (1–7) might also execute their actions through
the Ang II type 2 receptor (AT2) in tissue-dependent action [57,60,61]. Ang II actions on the AT2
receptor are thought to be beneficial through vasorelaxation, antihypertrophic, and anti-fibrotic effects.
However, AT2 receptor effects on the pathophysiology of HFrEF are predominantly reported during
AT1 blockades with ARBs), which are associated with increased plasma renin concentration and
activity [62–64]. Despite the extensive experimental and clinical research, the role of AT2 receptor
signaling in the failing myocardium remains controversial [65–68]. The balance between Ang II and
Ang (1–7) arms may be disturbed during HFrEF progression, both at a systemic level (in circulation)
and local level (in tissues). Whether pharmacological alteration of pathological renin activity can
restore balance to these pathways remains unclear.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 27 

 

Regardless of the cause of DCM, the progression from asymptomatic to symptomatic HF is 
associated with interdependent, neurohormonal alterations of the sympathetic nervous system 
(SNS), the renin–angiotensin–aldosterone system (RAAS), and the natriuretic peptide (NP) system 
[9–13]. Neurohormonal activation may initially compensate for impaired cardiac function; however, 
prolonged activation has deleterious effects on cardiac structure and performance, leading to 
symptomatic HF associated with edema [8,13,14]. An elevation in plasma norepinephrine signifies 
SNS activation, which occurs at Stage B in clinical and experimental HF and is strongly associated 
with progression of systolic dysfunction, congestion, and RAAS activation [15,16]. The NP system 
acts to counter the SNS-RAAS by promoting diuresis, natriuresis, and vasodilation [11,17–21]. 
However, the effects of the NP system are attenuated in advanced HF Stages C and D [22–25]. 
Activation of RAAS is associated with left ventricular dysfunction, cardiac dilation, sodium and 
extracellular fluid retention (edema), and cachexia/sarcopenia [26]. Systemic RAAS activation occurs 
with increased plasma renin activity, which initiates the activation of the primary targets for clinical 
intervention: angiotensin II (Ang II) and aldosterone [27]. Pharmacological blockade of RAAS has 
proven to be the mainstream/standard treatment approach for symptomatic HFrEF patients [28–37]. 
Standard medical therapies include RAAS blockers: angiotensin converting enzyme (ACE) inhibitors 
(ACE-I), which block the enzymatic conversion of Angiotensin I (Ang I) to Ang II; Ang II receptor 
blockers (ARB), which block the binding of Ang II to the Ang II type I receptor (AT1); 
mineralocorticoid receptor antagonists (MRA), which block effects of aldosterone; and angiotensin 
receptor/neprilysin (NEP) inhibitors (ARNi) [38,39]. Direct renin inhibitors (DRI) are designed to 
block enzymatically active renin from triggering a pathological alteration of downstream pathways. 
However, clinical trials have failed to demonstrate the value of renin activity inhibition for improving 
outcomes for patients with HF on concurrent RAAS blockers or diuretics [40–42]. Complicating the 
issue is the heterogeneity of patient plasma renin activity levels and their individualized responses 
to plasma renin activity levels on the background of RAAS blockers or HF progression itself. 

Here, we review the role of active renin in HFrEF progression and the potential benefits of renin 
activity as a diagnostic and/or prognostic plasma biomarker, as well as the potential value of renin 
inhibitors as a targeted therapy for HFrEF.  

2. Pathways of Renin Generation and Function 

Systemic RAAS maintains vasoconstriction, retains sodium and water, increases arterial blood 
pressure, and increases myocardial contractility, thus increasing the effective circulating blood 
volume during physiological and pathological conditions including HF [43,44]. Pathologically 
activated RAAS promotes symptomatic HFrEF [11,45]. The systemic RAAS activation cascade begins 
with production of prorenin and its conversion/activation to renin (Figure 1), an enzyme that was 
discovered more than a hundred years ago [46]. Renin activity in plasma increases as HFrEF 
progresses and is highest with symptomatic HFrEF in patients and animals. The prorenin/renin pair 
directly and indirectly modulates HFrEF progression. Figure 1 schematically represents a potential 
role of renin activity in the modulation of HFrEF through direct and indirect actions. 

 
Figure 1. Schematic representation of the potential role of renin activity in the modulation of heart
failure with reduced ejection fraction (HFrEF) via direct and indirect effects: Further complicating
the physiology of renin is that it has systemic and local effects within the heart. The green arrows
represent proteolytic and non-proteolytic conversions of prorenin to enzymatically active renin.
Enzymatically active renin has the potential to directly modulate HFrEF progression through binding
with receptors such as the (pro)renin receptor and/or IGF-2/M6P receptor. It can also act indirectly
through the generation of Angiotensin I (Ang I), which acts through the angiotensin converting enzyme
(ACE)-angiotensin II (Ang II)/Ang II type I receptor (AT1) and neprilysin (NEP)/Angiotensin Converting
Enzyme 2 (ACE2)-Angiotensin (1–7) (Ang (1–7))/Mas axes or possibly Ang II type 2 receptor (AT2) (*).

In mature mammals, renin is primarily expressed in juxtaglomerular (JG) cells and the collecting
duct in the kidney as an enzymatically inactive precursor, prorenin. Prorenin contains a 43-amino-acid
prosegment that covers the active cleft of renin to prevent intracellular proteolysis and to provide
folding, stability, and extracellular sorting [69–72]. Mechanisms controlling prorenin expression and
prorenin/renin secretion have been comprehensively reviewed [44,73–75]. Prorenin/renin expression
and secretion are tightly regulated. At the cellular level, they are regulated by calcium ions
(inhibitory) [76,77], cyclic adenosine monophosphate (cAMP; stimulatory) [73], and cyclic guanosine
monophosphate (cGMP; inhibitory) [78–80]. Ang II levels inhibit renin release through a negative
feedback loop, which is activated largely by the influence of the pathologic state or by the use of RAAS
medications [44,81,82]. At the organ level, they are regulated by two distinct mechanisms: through a
renal baroreceptor and by macula densa sodium chloride transport [44,83–85]. Hence, prorenin/renin
levels in circulation may be altered in response to stimuli like hypertension, sodium ion concentrations,
pharmacological agents including ACE-I, ARBs, loop diuretics, and others [44].

Prorenin potentially can be activated in two ways: proteolytic or non-proteolytic (without
proteolytic cleavage). Proteolytic activation involves the actual removal of the prosegment. It occurs in
the vesicular network of juxtaglomerular cells by a specific (still unknown) renal protease and potentially
in circulation by the kallikrein/Factor XII network [86–93]. Experiments performed in cathepsin
B-deficient mice ruled out this intrarenal enzyme as a prorenin convertase [94]. Non-proteolytic
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activation requires conformational change in the prorenin structure, leading to the removal of
prosegment from the active enzymatic cleft without proteolytic cleavage, which is achieved after
prorenin binds to tissue-expressed (pro)renin receptor, (P)RR [95]. Accumulated data suggest that, while
expressed, the majority of prorenin (up to 80%) is directly released into circulation, while enzymatically
active renin remains stored in the vesicular network awaiting controlled release [44,74,96]. Prorenin
circulates in blood at concentrations that are ten times higher than active renin [72]. Thus, renin activity
in circulation might be modulated by the alteration of active prorenin/renin secretion, stimulation of
prorenin activation in the circulation, or inhibition of enzymatic renin activity in circulation. Direct
renin inhibitors (DRI) were designed to pharmacologically block enzymatic renin activity in circulation
generated proteolytically as well as non-proteolytically [97].

The prorenin/renin network in the kidney is believed to be responsible for activation of RAAS
not only systemically in circulation but also locally at the tissue level through prorenin/renin
receptor (P)RR-binding mechanisms. (P)RR is a 350-amino-acid protein with a single transmembrane
domain, which is widely expressed in various tissues, including the heart and kidney, and acts in a
prorenin/renin dependent [95,98,99] and independent fashion [72,100]. After prorenin binds to the
(P)RR, non-proteolytically active and fully enzymatically active renin are released back into circulation
to trigger systemic RAAS or to work locally at the tissue level to generate Ang I, which converts to
the RAAS primary effector peptides, Ang II/Ang (1–7), that are involved in the pathophysiology of
cardiac remodeling [57,101–105]. Kidney-derived renin or prorenin required for Ang II generation in
the cardiac tissue [43,103,106,107] is taken up from circulation through diffusion in the interstitial space
or by the (P)RR or other unknown renin receptor(s) [95,101–104,108–112]. (P)RR non-proteolytically
activates prorenin also acts as a signaling receptor for the prorenin/renin pair to activate multiple
intracellular post-receptor cascades [113–115]. Thus, in cell models, the interaction of (P)RR with
prorenin is reported to be important for activation of the mitogen-regulated protein kinase (MAPK)
and extracellular signal-regulated kinases 1 and 2 (Erk1/2), leading to production of profibrotic genes,
including transforming growth factor-β1 (TGF-β1), plasminogen activator inhibitor type 1 (PAI-1),
fibronectin, and collagen [72,98,99,116,117]. Aside from prorenin/renin-dependent functions, (P)RR
is involved in vacuolar-type H+-ATPase (V-ATPase), Wnt/β-catenin and potentially other signaling
pathways [100]. In addition, (P)RR might be proteolytically shed from membrane surface after cleavage
by furin or/and ADAM19 and released into circulation as a 28-kDa soluble protein [118,119]. Plasma
levels of soluble (P)RR might reflect renal damage [72,120] and/or the degree of HFrEF [121].

Prorenin/renin secretion is under the control of Ang II through a negative feedback loop. Thus,
the magnitude of compensatory prorenin/renin secretion appears dependent on the degree of RAAS
activation through the Ang I–Ang II arm. Hence, Ang II generation blockade with ACE-inhibitors and
complete blockade of renin activity with DRIs increase the prorenin/renin plasma levels and could
potentially have adverse effects through stimulation of the (P)RR-related cascades. This possibility
supports the potential of (P)RR blockers as an alternative therapy for DCM-HF and other cardiovascular
disorders [72,99]. However, it is unclear whether increased prorenin plasma levels result in harmful
effects mediated through interaction with the (P)RR [122]. Moreover, the potential of (P)RR blockers
is compromised by studies utilizing conditional knockout mouse models of (P)RR, which have
demonstrated an essential RAAS-unrelated role for (P)RR in maintaining cellular homeostasis. Specific
deletion of (P)RR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure and
subsequently animal mortality, suggesting that it is critical for heart and kidney physiology [100]. The
nephron-specific knockout of (P)RR resulted in impaired V-ATPase activity and distal renal tubular
acidosis in mice but did not affect RAAS [123].

In addition to the interaction with (P)RR, plasma prorenin/renin might directly contribute to
cardiac remodeling and DCM-HF progression by non-enzymatically binding and activating the
insulin-like growth factor II/mannose-6-phosphate (IGFII/M6P) receptor, which is highly expressed by
cardiomyocytes and cardiac fibroblasts [75,109,124–127]. The actions of prorenin/renin through other
still unknown receptors cannot be excluded [103].
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It has been reported that neonatal cardiomyocytes as well as cardiac fibroblasts are able
to bind and internalize recombinant renin and prorenin through IGFII/M6P receptors [109].
The IGFII/M6P receptor is elevated, and its cardiac expression plays an important role in
hypertension-induced HF in spontaneous hypertensive rats. In cultured cardiomyoblast H9c2
cells and in left ventricles of hearts excised from a hypertensive Sprague Dawley rat model with
abdominal aorta ligation, IGFII/M6P receptor expression was elevated in response to Ang II-induced
apoptosis [128–131]. Prorenin/renin participates in structural remodeling of cardiomyocytes and
demonstrate anti-hypertrophic properties [75] via their interaction with the IFGII/M6P receptor. In
this way, the drugs modulating prorenin/renin levels potentially counter Ang II-dependent adverse
remodeling by directing renin to act non-enzymatically through IGFII/ M6P receptors. In rat myocardial
ischemia-reperfusion models, there is hormonal downregulation of cardiac IGFII/M6P receptor mRNA
expression during the acute postinfarction phase [75]. In contrast, cardiac IGFII/M6P receptor expression
has been shown to be increased in patients with end-stage HF [132]. Renin exerts its effect via the
IGFII/M6P receptor by stimulating the elongation of cardiomyocytes [133]. This effect requires the
activation of extracellular signal-regulated kinases 1/2 (ERK1/2) [134] and is antagonized by peroxisome
proliferator-activated receptor gamma (PPARγ), which is known to enhance renin gene expression [135].
Thus, renin acting via IGFII/M6P receptor is the first modulator that affects cardiomyocyte length
instead of cell thickness, unlike other pro-hypertrophic agents [75]. The effect of renin on the length of
cardiomyocytes is attenuated in the presence of M6P, which competes with renin for the IGFII/M6P
receptor [135]. Complete M6P/IGF2R knockout results in fetal overgrowth and neonatal lethality.
However, the inducible cardiac muscle, skeletal muscle, and liver-specific knockouts of the IGFII/M6P
receptor are not lethal and have no obvious phenotype [136]. However, renin expression level was not
analyzed in these mice.

Summarizing the above, circulating prorenin/renin has the potential to directly and/or indirectly
modulate HF progression (Figure 1). Direct modulation is believed to occur through stimulation
of tissue-specific (P)RR and/or IGFII/M6P receptors, which are not solely specific for renin, or other
still unknown receptor(s). The potential effect of direct genetic and pharmacological alterations of
(P)RR as modulators of HF outcomes have been discussed elsewhere [72,75,99]. Indirect modulation
of HF occurs through the enzymatic function of active renin and its downstream effects on Ang II
and Ang (1–7) production, both in circulation and at the local tissue levels. Imbalance of the two
pathways contributes to DCM-HF progression. A pharmacological alteration of renin activity might be
beneficial in HF management [99] and results in simultaneous changes of Ang II/Ang (1–7) [137], (P)RR,
and IGFII/M6P networks; the interplay of these effects remains to be investigated. We will focus on
DRIs that were primarily designed to block enzymatic activity of renin. Beta-blockers and potentially
vitamin D receptor activators, including vitamin D, also lower renin activity and potentially benefit HF
management; however, these modulators are beyond the scope of this review [138–140]. To improve
the outcomes of the renin activity-targeted pharmacological approaches aiming to delay or prevent
DCM-HF progression, at least three major questions remain to be answered. First, does a pathological
increase of renin activity in circulation begin in the presymptomatic stages (A and B) of HFrEF? Second,
does an increase in plasma renin activity have a causative effect on DCM-HF progression? Third, does
a precise alteration (i.e., normalization) of renin activity in plasma versus a complete suppression of
renin activity have differential effects on the progression of HF?

3. Renin Activity as a Diagnostic and Prognostic Marker

Plasma renin activity (PRA) and active renin concentration (ARC) longitudinally increase with
HF stages in experimental HF to become pathologically elevated in symptomatic HF; levels of each
vary between subsets of HF patients with reduced ejection fraction (HFrEF) [15,16,141–145]. Still,
the diagnostic and prognostic value of renin enzymatic activity as a predictor and/or modulator of
presymptomatic and symptomatic HFrEF, as well as its value for guiding therapy in the absence or
presence of a RAAS blockade, remains to be established.
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3.1. Assays of Plasma Renin Activity

Experimental studies of renin activity in patients with HFrEF are challenging; patients are
heterogeneous, often receive treatments that may modify renin activity, and may have additional
comorbidities which differentially affect experimental interventions during clinical trials. For example,
therapies that modulate Ang II/aldosterone production and activity affect prorenin/renin levels, renin
activity levels, and the potential effects of renin-targeted treatments.

Although circadian rhythm does not affect PRA levels [146], physical activity might. Thus, patients
are recommended to sit 10–15 min prior to blood collection [82]. Precautions should be taken during
blood sample collection, storage, and handling over assay performance to prevent in vitro proteolysis of
prorenin/renin and the non-proteolytic conversion of prorenin to active renin by cryoactivation and/or
low pH. Cryoactivation is the process of irreversible conversion of prorenin to active renin in cooled,
unfrozen plasma due to unfolding of the prorenin prosegment following by its cleavage by plasma
proteases. Considering that the concentration of prorenin in plasma is more than 10-folds greater than
active renin, even a small modulation of the prorenin/active renin ratio in vitro might significantly
compromise the final measurements [147–149]. Importantly, techniques and assay protocols used
to measure renin activity differ between HFrEF clinical studies (Figure 2), which may impact major
conclusions. Reference ranges for renin plasma activity vary; they depend on assay method and differ
between commercially available kits. Reference ranges for PRA and ARC have been summarized and
published [150].
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3.1.1. Ang I Generation Assay

Traditionally in clinical studies, renin enzymatic activity, abbreviated as PRA, is assayed
by a 2-step process measuring the potential of a patient’s plasma sample to convert exogenous
angiotensinogen (substrate) to Ang I (product) during in vitro incubation, followed by measurement
by radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA) of the generated Ang I.
However, the Ang I generation step is time-consuming and time-sensitive. Depending on active renin
levels in plasma, this step might take from 3 to 18 h [147,151]. Moreover, PRA measurements could be
altered by the amount of endogenous angiotensinogen level in plasma samples.

3.1.2. Immunoassay for Active Renin

The second method for estimation of enzymatically active renin in plasma samples is
angiotensinogen-independent and technically more convenient. This assay measures an active
renin concentration, abbreviated as ARC/APRC, using an antibody that is specifically directed
against the active site of renin and. therefore, capable to distinguish active renin from inactive
prorenin [99,151,152]. In general, these assays use principles of sandwich immunoassay; monoclonal



Int. J. Mol. Sci. 2019, 20, 3182 7 of 27

capture antibody recognizes both active renin and prorenin, followed by a detection step with a labeled
monoclonal antibody toward active renin. Several detection systems have been developed and are
comprised of either manual or automated immunoassays for the quantification of ARC/APRC [152–156].

3.1.3. Renin-Specific Substrate Cleavage Assay

An alternative strategy for renin enzymatic activity quantification utilizes exogenous fluorescence
resonance transfer (FRET) peptide substrates of renin based on the octa- to deca-peptides
derived from the N-terminal sequence of angiotensinogen, labeled with quencher/fluorophore
pairs—DABCYL/EDANS [157,158], Dnp/Amp, or QXL™520/5-FAM (SensoLyte 390 or SensoLyte
520 assay kit, AnaSpec, Fremont, CA, USA). Cleavage of the FRET substrate results in the recovery
of quenched fluorescence that can be directly monitored and conveniently quantified. Results of
this assay are expressed as active enzyme concentration in nM or ng/mL. The QXL™520/5-FAM
pair is superior to the other two: 5-FAM fluorophore has higher brightness and stability, and its
fluorescence can be monitored with minimal autofluorescence background of test compound, cell
components. and plasma proteins (SensoLyte 520 assay kit, AnaSpec, Fremont, CA, USA). The
FRET-QXL™520/5-FAM peptide substrate was optimized by the AnaSpec, Inc. for human, mouse,
or rat renin. Specificity of substrate cleavage was validated with several known renin inhibitors.
Commercially available kits containing FRET-QXL™520/5-FAM substrates are designed for in vitro
screening of renin inhibitors, are marked “for research use only”, and are not validated by the company
to measure renin enzymatic activity in plasma. Hence, normal values and ranges for renin are not
established for this assay. and clinical comparisons with PRA and ARC assays have not yet been
performed. Although nonspecific cleavage of this FRET substrate in plasma could not be excluded, a
supplementation of plasma samples with a combination of ethylenediaminetetraacetic acid (EDTA)
and serine protease inhibitors phenylmethylsulfonyl fluoride (PMSF) or aprotinin chelates zinc/calcium
ions required for activity of ACE and angiotensinase A and inactivates chymases and angiotensinase
B. FRET-QXL™520/5-FAM containing kits were successfully adopted by several laboratories for the
direct measurement of plasma renin enzymatic activity [145,159–165]. Importantly, the assay detected
changes in plasma renin activity concentration relative to pathophysiological stresses associated with
renal autograft ischemia-reperfusion injury [159], response to ARBs in normal and diabetic C57BL/6
mice [163], and chronic suppression of plasma renin activity in experimental mouse model of HFrEF
with DRI aliskiren [165]. We abbreviate this assay as PRAC (plasma renin activity concentration) in
order to distinguish from PRA and ARC/APRC.

3.2. Prognostic Value of Plasma Renin Activity in HFrEF

Over the past decade, the prognostic value of PRA in HF has been extensively evaluated and
reported. PRA was reported to be an independent prognostic marker in prospectively enrolled patients
with HFrEF (n = 996), irrespective of medical treatment, which was additive to N-terminal-pro hormone
B-type natriuretic peptide (NT-proBNP) levels and ejection fraction (EF) [166]. The independent
prognostic value of PRA was reported for chronic HF patients with chronic kidney disease comorbidity.
PRA in combination with NT-proBNP plasma levels identified a subgroup of high risk patients, who
might benefit from more intensive care [167]. Higher PRA levels were associated with a greater
likelihood for prevalence of congestive HF in a large diverse cross sectional study on hypertensive
individuals [168]. Elevated PRA levels demonstrated increased risk for congestive HF and a trend
toward higher mortality among patients with systolic blood pressure (SBP) ≥ 140 mmHg, but this was
not true for individuals with SBP < 140 mmHg [169]. PRA was significantly elevated in ambulatory
chronic HFrEF patients and in acute HFrEF patients [170]. All trials described above contain patients
with concurrent HF medications (ACE-I, ARB, ARNi, etc.). The Studies of Left Ventricular Dysfunction
(SOLVD) trial showed groups (control vs. HFrEF) could be stratified based on elevated PRA levels
without prior exposure to ACE inhibitors but did not exclude diuretics [16]. Similarly, others reported
that HFrEF patients on diuretics were more likely to have elevated PRA [171]. However, the results
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from Val-HeFT trials report that PRA remains a prognostic marker even in the presence of ACE
inhibitors, which are known to increase PRA levels [143]. ARC was reported to be superior to PRA
for the evaluation of HF severity and for independently predicting survival in HF patients who were
hospitalized for management of HFrEF and were already on ACE inhibitor or ARB medications [153].
Most recently, ARC was found to be a potential biomarker for HFrEF, which had value in addition to
NT-proBNP and NYHA classification, to subclassify HFrEF patients receiving RAAS blockers into
HFrEF phenotypes that required adaptive therapeutic interventions [156].

Although differences between PRA and ARC/APRC are not clearly established in HF, specific
measures of plasma renin activity may be useful for identifying individuals for whom titrated doses of
renin inhibitors may attenuate the progression of HFrEF.

Our unpublished pilot data show that a pathological elevation of PRAC precedes the development
of edema (symptomatic HFrEF) in a subset of patients with reduced systolic function with or without
symptomatic HF (Figure 3A). There was no significant difference in medical management between rEF
groups with or without symptomatic HF; an equal percentage of patients received beta-blockers, ACE
inhibitors, or ARBs [25,82]. Patients with a significant increase in PRAC levels compared to healthy
controls might benefit from the addition of DRI to standard HF therapy. Patients in this study were
characterized by enzymatic downregulation of the NP system, with elevated plasma levels of NEP,
atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and cGMP and reduced plasma
levels of the pro-natriuretic peptide convertase, corin [25]. There was a positive correlation between
PRAC and plasma N-terminal-pro atrial natriuretic peptide (N-ANP) (Figure 3B).
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Figure 3. Plasma renin activity concentration (PRAC) in healthy control and heart failure (HF) patients
with systolic dysfunction: (A) Plasma samples of healthy control patients (normal ejection fraction,
EF) and patients with reduced (rEF) with and without symptomatic HFrEF. (B) Spearman correlation
of PRAC to plasma N-terminal pro-atrial natriuretic peptide (N-ANP). All patients were males and
50–70 years old. Groups were healthy control subjects (n = 16), HF with reduced ejection fraction
(HFrEF) asymptomatic (n = 16), and HFrEF symptomatic (n = 15). Venous blood samples were collected
using EDTA-aprotinin tubes. This investigation was a part of our previously reported study [25]. This
study was approved by the Institutional Review Board, and all subjects gave their informed consent for
inclusion before they participated in this study [25]. Data represent mean ± SEM. ++ p < 0.01, (red,
Control vs. Asymptomatic) +++ p < 0.0001 (black, Control vs. Symptomatic), * p < 0.05 (Asymptomatic
vs. Symptomatic HFrEF). AU = arbitrary units. Comparisons between groups were calculated using
the Mann–Whitney test. Statistical analysis was performed with GraphPad Prism 8.0.2 (GraphPad
Software, San Diego, CA, USA). p > 0.05 was considered significant.

3.3. Renin Activity in Idopathic and Experimental (Genetic or Induced) Animal HFrEF Studies

The diagnostic value of PRA is evident in canine HF associated with idiopathic DCM (HFrEF) [172].
DCM is one of the most common heart diseases in dogs and carries a poor prognosis; it is characterized by
atrial/ventricular dilatation and myocardial systolic/diastolic dysfunction [173–175]. Similar to humans,
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dogs with DCM often progress to symptomatic HF characterized by dyspnea caused by pulmonary
edema and/or pleural effusion and by abdominal distention caused by ascites [172,174,176–179]. Dogs
with DCM may have cough, depression, weight loss, panting, syncope, and polydipsia. Similar to
humans, plasma NT-proANP levels are elevated in dogs with symptomatic HFrEF but not in dogs with
non-symptomatic DCM [174]. PRA and plasma aldosterone levels were reported to be significantly
increased above normal levels in dogs with symptomatic HFrEF [15,142,174]. PRA but not aldosterone
levels were elevated in a subset of dogs with asymptomatic HFrEF [142].

DCM and symptomatic HFrEF have been reported by echocardiography and histological studies
of nonhuman primates. However, PRA and ANP/BNP or levels for other HF markers were not
reported [180–184].

Translational mouse and rat models of DCM-HF are invaluable experimental tools for probing
single-variable research questions in a mammalian living system, without other confounders associated
with clinical studies [185,186]. Fortunately, the key features of the prorenin/renin network are rather
similar in humans and animals [74]. Still, the number of renin-producing kidney cells, the rate of
intracellular prorenin processing, the rate of prorenin/renin activation and secretion, and the rate of
angiotensinogen cleavage by active renin are species-specific [74,187]. Unlike other mammalian species,
mice express one (Ren-1, ortholog of human Ren gene) or two renin genes (Ren-1 and Ren-2, tandem
duplication of Ren-1, encodes non-glycosylated form), depending on the strain [188]. Although plasma
renin activity and aldosterone levels showed no significant differences between one renin and two
renin gene mice, C57Bl/6, C3H, and BALB/c mouse strains, which do not harbor the second renin
gene (Ren-2), are preferential for translationally relevant experimental DCM-HF studies as they more
closely represent the human condition [81,189,190]. Several renin knockout and transgenic animal
models have been generated and described. Unexpectedly, renin null rats (Ren-1 -/-) were viable
and showed a profound decrease in blood pressure and abnormal renal morphology with decreased
glomeruli numbers and impaired renal function [191]. Mice lacking the Ren-1d gene display reduced
plasma active renin levels, an increase in prorenin levels, abnormal renal morphology, and a sexual
dimorphic hypotension in females [192]. Ren-2 gene is functionally different and may not complement
the effects of Ren-1d gene in these mice. Mice lacking Ren-2 were viable and healthy without any
abnormality in kidney morphology [193]. To overcome potential translational discrepancies between
rodents and humans, transgenic humanized models overexpressing both human renin and human
angiotensinogen have been developed in several laboratories [194–199]. However, since these models
have a hypertensive phenotype, which alters HF progression, their value for DCM-HF studies is limited.

Experimental animal studies support the diagnostic value of plasma renin activity (PRA) in
symptomatic HF and HFrEF progression. PRA levels were elevated more than six-fold in rapid atrial
pacing-induced symptomatic HFrEF in pigs and were resistant to treatment with ACE inhibitors, AT1
blockers, or a combination of both [200]. PRA levels were about four-folds elevated in a sheep HF
model induced by rapid ventricular pacing [201]. In both models, PRA elevation was accompanied
by a several-fold elevation in plasma levels of norepinephrine, epinephrine, and aldosterone. PRA
levels were also elevated in dogs with advanced HF-induced rapid ventricular pacing [202]. In a
drug-naïve, genetic model of HF in male rats (SHHF/Mcc-facp), PRA, ANP, and aldosterone plasma
levels progressively increased with age, dilation of cardiac chambers, and development of overt HF.
In this model, hypertension, PRA, and male sex were independent factors contributing to cardiac
hypertrophy and HF. In female rats, the progression of PRA elevation and HF was delayed in
comparison with males [203]. PRA and aldosterone plasma levels were pathologically elevated in
a genetic mouse model of progressive cardiac dysfunction, leading to lethal arrhythmias due to a
cardiac-specific, dominant negative form of neuron restrictive silencer factor (dnNRSF-Tg) [204]. PRA
was significantly elevated in a transgenic (CSQ-tg) HF mouse model of progressive DCM, which was
characterized by abnormal calcium levels, hypertrophy, cardiac fibrosis, and poor contractility and
resulted in overt HF and death [205–207].
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We recently reported that PRAC levels are elevated prior to edema formation and reflect HFrEF
progression in female mice with DCM due to a transgenic, dominant-negative CREB transcription
factor [18,145,164,208,209]. Similar to humans, these DCM mice pass through all four Stages A–D
of HF in a sex-related manner from Stage A (risk without abnormalities) to progressively declining
contractile function and increasing heart dilation (Stage B) to the development of peripheral and
pulmonary edema and pleural effusions with increases in plasma ANP and BNP (Stage C) to the
onset of severe HF and death (Stage D) [145,210]. Pathological PRAC, plasma Ang II, and aldosterone
levels increased with the progression of systolic dysfunction, cardiac remodeling, edema, and stages
of HF in a sex-related fashion (Figure 4). Despite elevated PRAC levels, systolic and diastolic blood
pressure were not elevated and kidney function (plasma BUN and creatinine) was within normal
limits [145]. In female mice with DCM, the pathological rise in PRAC levels preceded the development
of edema (Stage C) and likely contributed to the early demise of female verses male DCM mice (median
survival 13.8 verses 20 weeks). Although the RAAS may be affected by sex [211,212], ovariectomy
did not influence PRAC, systolic function, lung water retention, and survival [145]. Potentially, the
increased PRAC levels in female mice with DCM may be driven by sex-related differences in upstream
pathways related to the kinin–kallikrein/Factor XII network, which may regulate enzymatic prorenin
activation [92,93].
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Figure 4. PRAC increases in a sex-dependent manner throughout the course of HFrEF progression
in male and female mice with dilated cardiomyopathy (DCM). This figure combines published and
unpublished data from our previously reported study [145]. Wild type males (WT-M): n = 5–8/age
group; WT females (WT-F): n = 6–7/age group; DCM males (DCM-M): n = 7–8/age group; DCM
females (DCM-F): n = 6–8/age group. +/red—Difference between WT and DCM females: ++ p < 0.01,
+++ p < 0.001; +/black—Difference between WT and DCM males: +++ p < 0.001; */black—Difference
between DCM females and DCM males: *** p < 0.001. Time-dependent differences between sexes (male
vs. female) and differences between genotypes (WT vs. DCM) were analyzed by two-way ANOVA
with the Bonferroni posttest correction using GraphPad Prism 8.0.2 (GraphPad Software, San Diego,
CA, USA). Data are expressed as mean ± SEM. All animal study activities were approved [145].

4. Renin Activity as a Bio-Target for Pharmacological Intervention Using Direct Renin Inhibitors
(DRI) in HFrEF

The pharmacological class of direct renin inhibitors (DRI), which are used predominantly to
treat hypertension, work through high-efficiency binding to active renin [213]. As the initial step
in the RAAS pathway, direct blockage of the enzymatic activity of renin has the theoretical benefit
of modulating downstream molecules and receptors. In both human and animal trials, aliskiren
continues to be the most frequently studied DRI; however, newer drugs are in development, such as
ACT-178882/MK-1597 [214] and TAK-272 (imarikiren) [207,215] as monotherapies or in combination
with other RAAS inhibitors.
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4.1. In Clinical HFrEF

First and second generation DRIs failed due to their short durations of action, low oral
bioavailability, and poor efficacy [216]. In 2007, aliskiren, a third generation orally active DRI
was approved by the U.S. Food and Drug Administration for the treatment of hypertension [216].
Soon thereafter, this small-molecule inhibitor was enrolled in several clinical trials [40,41,217–219]
to investigate the clinical effect of the drug against and in combination with standard therapeutic
medications for the treatment of HF. The clinical trials were largely neutral [40–42,218–220], with most
reporting no reduction in cardiovascular deaths or rehospitalizations due to DRI or the combination of
RAAS blockers (ACE-I, beta-blockers, etc.). Some trials even stopped prematurely due to increases
in adverse events compared to control groups. A retrospective critical evaluation of these clinical
trials revealed inconsistent enrollment criteria which included HF with reduced ejection fraction
(HFrEF) ranging from a ≤35% to 45% variation in the initial HF stage based on the New York Heart
Association (NYHA) classification and mixed comorbidities. Only the Additive Renin Inhibition with
Aliskiren on Renal Blood Flow and Neurohormonal Activation in Patients with Chronic Heart Failure
and Renal Dysfunction (ARIANA-CHF-RD) trial enrolled patients with mild to severely increased
plasma renin activity (PRA) at baseline [219]; aliskiren successfully lowered PRA in the treatment
group after 26 weeks compared to placebo controls. However, it is important to note that there
was no classification between the outcomes of trial groups based on PRA range at enrollment (mild,
moderate, and severe compared to the normal level) that have been reported. One explanation for this
is that standard HF therapeutics (ACE-I, ARB, beta-blockers, diuretics, etc.) increase plasma renin
activity levels [82,221]; thus, the utility of these values require additional research. Also, females
were significantly underrepresented, with only 15–23% of the patient population. A sub-study of the
Six Months Efficacy and Safety of Aliskiren Therapy on Top of Standard Therapy, on Morbidity and
Mortality in Patients with Acute Decompensated Heart Failure (ASTRONAUT) trial revealed that
aliskiren significantly reduced PRA levels in a one-year follow-up. Another major conclusion was that
aliskiren treatment had a greater effect on PRA, more so than plasma aldosterone modulation, and
lowered NT-proBNP levels throughout treatment. PRA was also found to correlate with neurohormonal
status as a prognostic and stable biomarker, with elevated PRA corresponding to the highest risk
group [222]. Considering these reviews, it is possible that a therapeutic advantage of aliskiren toward
HF was overlooked due to improper identification of the patient subpopulations and the limitations of
clinical PRA testing versus ARC or PRAC as discussed earlier. Alternatively, these trials may have
failed because they were not biomarker-guided to treat patients with increased PRA or because they
were initiated when HF was too advanced (HF Stages C and D). Another explanation is that patients
might not have received benefits from DRI because they already were on maximally tolerated doses of
standard ACE inhibitors and ARBs [219,223].

Studies with DRI revealed that renin aggravates HF indirectly though generation of Ang I and
activation of Ang I–Ang II–ATI axis or directly via renin receptors. The DRI, aliskiren has a dose-related
effect on blood pressure modulation in patients [224,225]. It has been proven safe in normotensive
patients from 40–640 mg with daily oral administration [226]. Most studies utilize a loading protocol
with initiation at 150 mg for 1–2 weeks, followed by an increase to 300 mg daily dose per person. If not
tolerated due to side effects or hypotension, reduction to 150 mg maintenance is standard. Aliskiren
was shown to decrease Ang II levels in people starting at a single dose as low as 40 mg and can
suppress levels by 75–89% after one week of daily administration [227]. Results from the Aliskiren
Observation of Heart Failure Treatment (ALOFT) trial using the lower common dose of aliskiren
(150 mg/daily) showed positive results when used in combination with standard therapies. Aliskiren
was well-tolerated when administered in combination with ACE inhibitors, beta-blockers, or MRAs.
Importantly, blood pressure was not modulated by aliskiren treatment alone when compared to the
placebo [228,229].

Increased plasma renin activity enhances aldosterone production. The degrees of increase in
plasma renin concentrations and plasma aldosterone levels correlate with prognosis in patients with
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HF [11,16,230]. Aldosterone has an avid, renal sodium–water retaining effect and is considered a key
hormone in the development of HF through its pleiotropic actions mediated by mineralocorticoid
receptors [51]. Aldosterone has adverse effects on the cardiovascular system, including prevention
of myocardial neuronal reuptake of norepinephrine (thereby enhancing sympathetic drive) and
potentiation of fluid overload and electrolyte imbalance [9,51,231,232]. Clinical trials utilizing
mineralocorticoid receptor antagonists (MRA) with survival benefits support the concept that
aldosterone activation is deleterious in symptomatic HFrEF (Stages C and D) [31]. MRAs reduce the
harmful effects of hyper-aldosteronism on the cardiovascular system and have a potassium-sparing
diuretic effect.

Although the majority of DRI studies have focused on patients with rEF for enrollment
criteria [41,42,217–219,228], newer trials are starting to consider targeting renin activity in patients
with preserved EF [233]. Additionally, the systemic nature, growing comorbidities and classification of
HF need to be considered when attempting to modulate RAAS/NP in HF [38,39,234–237]. This review
is limited to HFrEF; however, further investigation encompassing the additional causes of HF should
be considered.

4.2. In Animal Models of HFrEF

There are growing numbers of experimental studies addressing the effect of renin activity inhibition
in animal models of cardiomyopathy leading to symptomatic HF. These studies assess the outcomes
of interventions that targeted renin activity solely or versus dual renin system interventions. In
myocardial infarction (MI)-induced HF models, comparative treatments with ACE inhibitor, aliskiren,
or a combination of both revealed that the synergism of the drug combination was more beneficial
than when either agent was used alone [238]. In an induced, diabetic cardiomyopathy mouse model,
aliskiren prevented cardiac systolic and diastolic dysfunctions similar to ARBs and ACE inhibitors,
significantly lowered circulating pro-inflammatory cytokine levels, and protected against oxidative
stress [239]. In a mouse model of acute MI, aliskiren treatment improved systolic dysfunction and
prevented remodeling, apoptosis, and hypertrophy of the left ventricle [240]. Similar effects were seen
in a doxorubicin-induced cardiomyopathy rat model [241]. In a randomized, blinded experimental
study we found, that biomarker-guided treatment with aliskiren [145,210], in which PRAC levels were
elevated at presymptomatic Stage B HF, reduced the progression of cardiomyopathy, delayed the
development of edema, and significantly prolonged life [165].

Several experimental studies suggest that aliskiren might work not only through Ang II but also
alternatively through the Ang (1–7) arm. In hypertensive rats, 50 mg/kg/day subcutaneous aliskiren
tended to reduce plasma Ang II and significantly reduced plasma Ang (1–7) levels compared to
vehicles [242]. In another study, aliskiren (50 mg/kg/day) upregulated the expression of AT1 and MAS
receptors and downregulated the expression of AT2 receptor in rats with diabetic nephropathy [243].
Modulation of Ang (1–7) by aliskiren was reported in patients with nondiabetic chronic kidney
disease [244].

In addition to being a direct inhibitor of enzymatic renin activity, aliskiren (administrated orally
at 10 mg/kg/day in drinking water) was reported to increase cardiac bradykinin and kallikrein
gene expression levels in TGR(mRen-2)27 rats independent of its effects on renin inhibition [245].
A subsequent study reported that aliskiren (10 mg/kg/day) protected the rat hearts from myocardial
ischemia-reperfusion injury via a B2-receptor- and AT2-receptor-mediated mechanism [246]. When
aliskiren was administrated subcutaneously (SC) via osmotic mini pumps in doses that do not modulate
blood pressure, its effects on local tissue’s modulations were reported. Thus, in diabetic transgenic
mouse models, SC aliskiren administration resulted in improvements in albuminuria and renal fibrosis
by regulating inflammation and the alteration of collagen synthesis and degradation [247]. It also
improved insulin resistance and adipose tissue dysfunction in type 2 diabetic mice through an increase
in insulin sensitivity, insulin secretion, and adipocyte differentiation and a reduction of oxidative
stress [107]. In an Apo E-/- C57/BL6 mouse model, SC aliskiren administration results in an increased
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number and function of pro-angiogenic cells in mice and prevented atherosclerotic lesion formation
in spleen-derived pro-angiogenic cells. The effect was independent from blood pressure through
lowering (P)RR expression [248,249]. The results of these studies strongly suggest that the effect of DRI
on renin activity in vivo could not be simply estimated by the changes in plasma levels of Ang I and
Ang II and that PRA, ARC/APRC, or PRAC assays should be used.

Of the newer DRI drugs, only limited in vivo studies have been reported. In human-renin and
human-angiotensinogen double transgenic (dTg) rats, TAK-272 was found to have a greater potency
and a six-fold increase in oral bioavailability when compared to aliskiren for modulating blood
pressure [215]. In a calsequestrin female transgenic (CSQ-Tg, C57BL/6 x DBA/2 hybrid) mouse model of
severe symptomatic HF with high mortality, oral daily TAK-272 in a dose-dependent fashion prolonged
the survival and, at the highest dose (300 mg/kg), showed a significant reduction in elevated PRA,
decreased cardiac hypertrophy, a two-fold increase in left ventricular EF, decreased plasma NT-proBNP
levels, and decreased lung congestion—clearly signifying cardioprotection during HF [207]. In a
separate cohort of CSQ-Tg mice treated with 300 mg/kg TAK-272 for one week, there was no difference
in blood pressure compared to vehicle controls [207].

5. Conclusions

The potential value of renin activity as a diagnostic and/or prognostic biomarker of HFrEF when
assessed as PRA, ARC, or PRAC is evident in a growing number of animal and clinical studies.
Still, studies evaluating renin activity as a predictor of HF in presymptomatic patients are lacking.
Nevertheless, experimental animal studies strongly support the potential therapeutic benefits of
precisely titrating suppression of renin activity in symptomatic HFrEF. However, clinical advancement
of DRIs has slowed with the termination of the aliskiren HF trials due to side effects and poor
outcomes. Clinical trial enrollment of patients with advanced HF stages (C and D) may account for
some inconsistencies in evaluating renin activity levels in HFrEF patients. In addition, the dose-related
effects of aliskiren in HF studies have not been well-established. Most studies have defaulted to the
traditional hypertensive doses of 150–300 mg/kg/daily rather than considered the benefits of lower
doses observed from the experimental studies. Currently, there are new DRIs and (P)RR inhibitors
under development, which suggest that the cardiovascular field is not prepared to give up on the
promising pharmacologic potential of renin activity as a bio-target to delay HF progression. However,
it is important to consider that future HFrEF trials will unlikely be designed in the absence of currently
recommended treatments, including other RAAS blockers. To improve both the preclinical and clinical
uses of renin activity as a reliable HFrEF biomarker and bio-target, consensus should be reached over
laboratory assays used in different clinical studies. It is preferable that patient plasma renin activity
levels be obtained prior to initiation of RAAS blockers or diuretic therapy, as these medications may
elevate levels. The optimal method of diagnosing and monitoring enzymatic renin activity levels in
patient plasma samples will allow for improved outcomes through the use of individualized/precision
medicine approaches in HF clinical management. Significant consideration for proper trial enrollment
criteria should be paramount, as experimental studies indicate that DRIs are efficacious when applied
to the proper subgroups.
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Abbreviations

HF Heart Failure
rEF Reduced Ejection Fraction
DCM Dilated Cardiomyopathy
ACC American College of Cardiology
AHA American Heart Association
SNS Sympathetic Nervous System
NP Natriuretic Peptide
ANP Atrial Natriuretic Peptide
BNP B-Type Natriuretic Peptide
NT-proANP N-terminal-pro ANP
NT-proBNP N-terminal-pro hormone BNP
RAAS Renin–Angiotensin–Aldosterone System
ACE Angiotensin Converting Enzyme
ACE-I Angiotensin Converting Enzyme Inhibitor
ACE2 Angiotensin Converting Enzyme 2
Ang I Angiotensin I
Ang II Angiotensin II
Ang (1–7) Angiotensin (1–7)
ARB Angiotensin II Receptor Blockers
AT1 Angiotensin II Type 1 Receptor
AT2 Angiotensin II Type 2 Receptor
Mas G Protein-Coupled Receptor Mas
MRA Mineralocorticoid Receptor Antagonist
ARNi Angiotensin Receptor Neprilysin Inhibitors
DRI Direct Renin Inhibitor
NEP Neprilysin
JG Juxtaglomerular
cAMP Cyclic Adenosine Monophosphate
cGMP Cyclic Guanosine Monophosphate
(P)RR (Pro)Renin Receptor
MAPK Mitogen-Regulated Protein Kinase
Erk1/2 Extracellular Signal-Regulated Kinase 1 and 2
TGF-β1 Transforming Growth Factor-β1
PAI-1 Plasminogen Activator Inhibitor Type 1
IGFII Insulin-Like Growth Factor II
M6P Mannose-6-Phosphate
PPARγ Peroxisome Proliferator-Activated Receptor gamma
PRA Plasma Renin Activity
ARC Active Renin Concentration
APRC Active Plasma Renin Concentration
PRAC Plasma Renin Activity Concentration
RIA Radioimmunoassay
ELISA Enzyme-Linked Immunosorbent Assay
EDTA Ethylenediaminetetraacetic Acid
PMSF Phenylmethylsulfonyl Fluoride
AU Arbitrary Units
SBP Systolic Blood Pressure
SOLVD Studies of Left Ventricular Dysfunction
NYHA New York Heart Association
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ARIANA-CHF-RD
Additive Renin Inhibition with Aliskiren on Renal Blood Flow and
Neurohormonal Activation in Patients with Chronic Heart Failure and
Renal Dysfunction

ASTRONAUT
Six Months Efficacy and Safety of Aliskiren Therapy on Top of Standard
Therapy, on Morbidity and Mortality in Patients with Acute
Decompensated Heart Failure

ALOFT Aliskiren Observation of Heart Failure Treatment
BUN Blood Urea Nitrogen
SEM Standard Error of the Mean
SC Subcutaneous
dTg Double Transgenic
CSQ Calsequestrin
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